
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

DISTRIBUTED SENSOR NETWORKS

FINAL REPORT
TO THE

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

30 SEPTEMBER 1986

Approved for public release. distribution unlimited.

LEXINGTON MASSACHUSETTS

I'lic ,irk reimrit-o, iIi.,, ruui was performed at Lincoln Laliorasory, A cMtflrI
f,,r i,.tarc'lo siperatelI b, Nlan,*4rhuwlt* Iltitute of Technology. with t e suppe ol
tlivinirtintIt tif the Air Force under Contract Fl962.85-(.2.

lhil ri'|1prt nisy lit reprleiacti to satisfy neceds of US. Government agene.

lht' % iews arl conclusions contained in this document are those of the Contra~
4111d ihoud not be interpreted as necessarily representing the official policies eiltier
v' lre-'d or implied, of the United States Government.

The ESD Public Affairs Office has reviewed this report, and it
is releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Hugh L. Southall, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to distroy this document
when it is no longer needed.

ABSTRACT

This is the final Lincoln Laboratory technical report for the DARPA Distributed Sensor Networks

(DSN) project. The report reviews the DSN concept and documents the accomplishments, tech-

nical results, and lessons learned during the project. Topics covered include: acoustic direction

finding, distributed tracking algorithms, hardware and software elements of an experimental test

bed, network communication and self-location, multisite data-integration, and experimental

demonstrations of tracking low-flying aircraft using multiple distributed acoustic and TV sensors.

Acces.lon For

I- - rv .i..

-- -- ! t:c ir b l,... :-- :.._ .

ii / " I>i~

TABLE OF CONTENTS

Abstract iii
List of Illustrations vii
List of Tables xi

1. EXECUTIVE SUMMARY

2. INTRODUCTION TO DIS'RIBUTED SENSOR NETWORKS 7

3. TEST BED 13

3.1 Introduction 13
3.2 Test-Bed Hardware 13
3.3 Test-Bed Software Systems 25

4. ACOUSTIC ARRAY PROCESSING ALGORITHMS 31

4.1 Introduction 31
4.2 Theoretical Basis for Wideband Array Method 33
4.3 Wideband Algorithm for DSN Planar Arrays 35
4.4 Experimental Results 41

5. TV SENSOR ALGORITHMS 47

5.1 Introduction 47
5.2 Target Selection and Camera Control 48
5.3 Image Processing 55
5.4 Target Detection 55
5.5 Experimental Performance 58

6. DISTRIBUTED TRACKING ALGORITHMS 61

6.1 Introduction 61
6.2 Bayesian Model-Based Distributed Tracking Algorithm 61

6.2.1 Overview 61
6.2.2 Basic Notation and the Target Dynamic Model 64
6.2.3 Position Track Updating with TV Azimuth

Measurements 67
6.2.4 Position Track Updating with Acoustic Azimuth

Measurements 74
6.2.5 Combining Local and Foreign Position Tracks 80
6.2.6 Position Track Broadcast Policies 85
6.2.7 Acoustic Azimuth Tracking 93
6.2.8 Acoustic Position Track Initiation 96
6.2.9 Azimuth Track Broadcast Policies 101
6.2.10 Tracking Multiple Aircraft 101
6.2.11 Possible Improvements 104

6.3 Delayed Acoustic Tracking 106

v

7. DISTRIBUTED SURVEILLANCE SOFTWARE 113

7.1 Introduction 113
7.2 Functional Elements 115

7.2.1 Tracking Algorithm 116
7.2.2 Other Functional Elements 119

7.3 Process Groups 121
7.4 Messages 126
7.5 Using the UIP to Run an Experiment 129

8. COMMUNICATION SUBSYSTEM 137
8.1 Introduction 137
8.2 Communication Hardware 138
8.3 Distributed Surveillance Communication Software 142
8.4 Communication Network Technology Research 145

9. REAL-TIME TEST-BED EXPERIMENTS 149
9.1 Introduction 149
9.2 Multisensor Distributed Tracking Experiments 149
9.3 System Integration and Checkout Tests 156

10. ALGORITHM AND SOFTWARE DEVELOPMENT TOOLS 157
10.1 Introduction 157
10.2 Acoustic Data Simulator 158
10.3 Network Simulator 161
10.4 The Test Bed as an Acoustic DSN Simulator 165
10.5 The Test Bed as an Acoustic and TV DSN Simulator 171
10.6 Symbolic Information Flow Simulation 175
10,7 Software Development Tools 177

11. DISTRIBUTED SURVEILLANCE SYSTEM DEVELOPMENT
LESSONS 181

12. SELF-LOCATION ALGORITHM STUDIES 185

12.1 Introduction 185
12.2 Location Algorithm 187
12.3 Internodal Range Measurement 193

13. MULTISITE DATA-INTEGRATION STUDIES 197

13.1 Introduction 197
13.2 Multisite Integration Algorithms 197
13.3 User Display and Multisite Integration Examples 200
13.4 Discussion 209

14. KNOWLEDGE-BASED SYSTEM DIAGNOSIS 213

15. REMAINING RESEARCH AND DEVELOPMENT 219

ACKNOWLEDGEMENTS 221

REFERENCES 223

vi

LIST OF ILLUSTRATIONS

Figure
No. Page

2.1 Deployment Options for Distributed Sensor Networks 11

3.1 Lincoln Laboratory DSN Test-Bed System 14

3.2 One of Three Experimental Vehicles Used for Field Deployment
of DSN Test-Bed Elements 14

3.3 Microphone with Preamplifier Attached to Wooden Block for
Ground-Level Field Deployment. 2-in Windscreen Covers
Microphone Head 15

3.4 Field Deployment of a Nine-Microphone Array 16

3.5 Weather Protected TV Camera Installed on Remote Control Mount 17

3.6 Standard Nodal Computer (SNC) Used in the DSN Test Bed 18

3.7 Standard Acoustic Node for the DSN Test Bed 20

3.8 Acoustic Signal Processing Subsystem (SPS) 21

3.9 Standard TV Node for the DSN Test Bed 22

3.10 Gateway Node for the DSN Test Bed 22

3.11 Acoustic/Tracking Node and Gateway Node Installed Within
Experimental Vehicle 24

3.12 Node Run Time System (NRTS) Application Programming
Interface 25

3.13 NRTS Organization 26

3.14 Hierarchical Structure of the File Oriented Input-Output System 26

4.1 Delay and Sum Beamforming 31

4.2 Spectral Mapping Property of the Zero-Delay Wavenumber
Spectrum 35

4.3 Schematic Representation of Wideband Array Algorithm 36

4.4 Comparison of Wideband and Frequency-Wavenumber Methods 40

4.5 Tri-Delta Microphone Array Configuration 42

4.6 Acoustic Power as a Function of Bearing for Two Targets 44

4.7 Azimuth Estimates as a Function of Time 46

5.1 TV Subsystem Elements and Tracker Interactions 47

vii

Figure

No. Page

5.2 Complete Camera Pointing Algorithm 48

5.3 Examples of Camera Pointing Policies 50

5.4 Selection of Pointing Algorithms 51

5.5 Elevation Control Algorithm 52

5.6 Target Detection Probability of TV Subsystem 54

5.7 TV Subsystem Target-Detection Algorithm 56

5.8 Camera Control During Live Experiment 58

6.1 Organization of the Distributed Tracking Algorithm 62

6.2 Updating a Target Track Using a TV Measurement:
Conceptual Steps 69

6.3 Real-Time Helicopter Tracking with a Single TV Subsystem 73

6.4 Updating a Track with an Acoustic Measurement:
Conceptual Steps 75

6.5 Real-Time Helicopter Tracking with a Single Acoustic Array 79

6.6 Information Diagram Illustrating Serious Information Loss
when Only Total Tracks Are Broadcast 83

6.7 Information Diagram Illustrating Minor Information Loss
Situation 84

6.8 Symbolic Information Flow Diagram Illustrating Alerting 85

6.9 Illustration of Track Broadcast Sequence for a Single Aircraft 88

6.10 Helicopter Tracking Example for Minimal Communication Policy 90

6.11 Helicopter Tracking Example for Maximum Communication Policy 91

6.12 Illustration of Location Using Possible Position Curves 108

6.13 Illustration of Location Using the Reflection Method 109

7.1 Functional Organization of Tracking Software 114

7.2 Tracking Process Group 122

7.3 Broadcast Input Filter Process Group 124

8.1 Test-Bed Communication Subsystems 137

8.2 Microwave Ring Used to Interconnect Test-Bed Ethernets 140

8.3 Organization of Radio Channel into Slots with Discrete Packet
Start Times Within Each Slot 147

viii

Figure

No. Page

9.1 Experimental Test Bed for DSN Demonstrations 150

9.2 Demonstration Scenario for Distributed Mixed Sensor Tracking 150

9.3 Real-Time Helicopter Track Display Obtained by Tracking
with Both Acoustic and TV Nodes 153

9.4 Local TV Display with Remote TV Image Overlay 155

10.1 Elements of the SPS Output Simulation Software 160

10.2 Elements of the Acoustic Sensor and Signal Processing Model 162

10.3 Organization of Application Software 163

10.4 Organization of Test-Bed Simulator Software 164

10.5 Procedures for Using Simulated Data and Logging Performance 166

10.6 Simulated Track of Two Helicopters Through Six Nodes 167

10.7 Duplicate Tracks Obtained During the Simulated Flight
of a Single Helicopter 170

10.8 TV Simulation Module for Real-Time Experimentation 172

10.9 Simulated Combined TV/Acoustic Tracking Scenario 173

10.10 Position Track and Error Comparisons 174

12.1 Network That Cannot be Configured by Triangulation 186

12.2 Network Layout and Measurement Options 189

12.3 Sparcely Connected Network Used for Self-Location Tests 192

12.4 Illustration of Strong Late Multipath Arrival 194

12.5 Determination of Range Using Time-Stamped Messages 196

13.1 Example of a Situation Display 201

13.2 Situation Display Example at a Later Time and Zoomed In 205

13.3 Situation Display Showing a Communication Failure 207

13.4 Illustration of Communication and Integration Interrelation 211

14.1 Sample Output from Diagnosis System 216

ix

LIST OF TABLES

Table
No. Page
2.1 Distribution Option for Surveillance System Functions 8

12.1 Algorithm Performance for Network in Figure 12.3 191
14.1 Equal-Resolution Operator 217

xi

DISTRIBUTED SENSOR NETWORKS

1. EXECUTIVE SUMMARY

The overall DARPA Distributed Sensor Networks (DSN) program involved several

research organizations and was aimed at developing distributed target surveillance and tracking

methods for systems employing multiple spatially distributed sensors and processing resources.

Such systems would be made up of sensors, data bases, and processors distributed throughout an

area and interconnected by an appropriate digital data communication system. The working

hypothesis of the program was that through netting and distributed processing, the information

from many sensors could be combined to yield effective surveillance systems. The overall con-

cept called for a mix of sensor types as well as geographically distributed sensors.

The Lincoln Laboratory program emphasized the development of an experimental test bed

to demonstrate DSN concepts. Surveillance and tracking of subsonic low-flying aircraft using

ground based acoustic and imaging sensors was selected as the focus of the system development

and demonstrations. Small arrays of microphones providing directional information were

employed as acoustic sensors, and visible wavelength TV cameras were used as imaging sensors

in the test bed.

A primary objective of the Lincoln Laboratory DSN effort was to prove the feasibility of

distributed surveillance systems by demonstrating real-time distributed tracking of low flying air-

craft. This was accomplished. The real-time acoustic and TV tracking experiments described in

Section 9 constitute the primary feasibility demonstration. They involved real-time helicopter

tracking using an experimental system composed of six sensor/processor nodes deployed in the

vicinity of Hanscom Field.

The major part of the effort was the development and test-bed implementation of distributed

algorithms to demonstrate distributed tracking. Most of this report deals with these topics. Algo-

rithms and test-bed systems are described and discussed in detail. Experimental results. involv-

ing simulated as well as real data, are included to illustrate concepts and validate algorithms.

Other topics that are covered include network self-location and multi-site data integration.

The test-bed tracking system is implemented using autonomous cooperative processes

operating at each of the nodes. Once started in operation, each tracking process interacts with

those at other nodes through discrete data messages, with no external control. Each node per-

forms tracking with whatever data are available to it: data derived from attached sensors and data

obtained through messages from other nodes. This structure has resulted in a tracking system that

easily adapts to changes in the number and type of sensor/processor nodes in the network. When

a node fails the only impact on the overall system is the degradation in tracking performance due

to the loss of the sensor at the node.

Real-time distributed tracking demonstrations required the development of suitable algo-

rithms. Tracking algorithms were developed to: (1) perform sensor independent tracking; (2)

track aircraft with small microphone arrays; and (3) perform tracking with a mix of sensor types,

including acoustic and TV sensors.

The DSN tracking algorithms depend upon well understood estimation methods. They can

easily be adapted to accommodate new sensor types by the addition of sensor specific Kalman

Filters or Extended Kalman Filters for each new type. Also, they provide estimates of present

target positions despite acoustic propagation delays and automatically utilize the data from any

number of DSN nodes. These algorithms replace less general acoustic tracking algorithms that

were developed during the early stages of the DSN project. The approach for the earlier algo-

rithms was to minimize assumptions about target dynamics. This resulted in time-delayed posi-

tion estimates, ineffective use of the data from the sites nearest to the target, and provided no

obvious way to combine acoustic with non-acoustic tracks. The initial algorithms also provided

no theoretical model for utilizing data. The new algorithms solved these problems by modeling

target dynamics and using the models as the basis for tracking in terms of present target position,

independent of acoustic propagation delays. For tracking purposes the targets are now modeled

as constant velocity objects subject to random accelerations.

There are several tracking algorithm components. The azimuth tracking algorithm is a

Kalman Filter that processes acoustic azimuth measurements into azimuth tracks. The filter

assumes constant angular motion with random angular acceleration and forms azimuth tracks

without reference to the geographical position of the target. The track initiation algorithm forms

position tracks using pairs of azimuth tracks from two different nodes. Extended Kalman Filters

(EKF) are used to update position tracks with acoustic azimuth measurements or line-of-sight

azimuth measurements obtained from TV cameras. All algorithms compensate for acoustic

delays when needed so that tracking is in terms of present target position estimates.

2

The Extended Kalman Filters in a node process only measurements derived from the sen-

sors attached directly to the node. Sensor information from other nodes is indirectly utilized by

forming optimal Bayesian combinations of local position tracks with position tracks received in

messages from the other nodes. This combining is independent of the sensor types since it deals

only with target state and error covariance estimates. The combining algorithm is the mechanism

we have used to decompose and distribute the tracking function so each node is concerned only

with its own attached sensors.

Other tasks handled by the tracking algorithms include data association, track association,

and track maintenance. We elected to implement these functions as simply as possible. In addi-

tion we elected to allow each measurement to be associated with only one track. One result is

that alternative interpretations of the measurement data are not considered. These are areas in

which significant improvements could be made to the algorithms.

Data association is the assignment of new sensor measurements to tracks. This is done by

comparing new measurements with tracks and associating a measurement with the first track that

yields a good match. The match test is statistical and takes measurement errors and the track

errors into account.

Track association identifies a track estimate from one node with the correctly corresponding

track estimate at another node based on track identifiers that are assigned when tracks are ini-

tiated. During normal system operation tracks are initiated by one or two nodes. For the two

node case, the track identification rules are such that both assign the same identifier. Subse-

quently, other network nodes are alerted to approaching targets and given the correct identifier.

Track maintenance involves deciding when to add or delete a track from the track data base

in a node. Tracks are deleted when their estimated errors exceed a threshold. A track can persist

(coast) during periods when no new measurements are associated with the track. Without new

measurements the estimated errors increase, eventually becoming large enough to cause the track

to be deleted. A track generated by the track initiation algorithm is added to the data base when it

satisfies a number of conditions based on its estimated error and the geometry of the situation.

The last important issue for the distributed tracking algorit'ams is what information to

exchange between nodes and when to broadcast it. Unprocessed sensor measurements are never

3

broadcast. Azimuth tracks are broadcast when they have not been associated with a position

track. This makes them available for position track initiation. Position tracks are broadcast when

their estimated errors are small enough and several other conditions are met. Some conditions

involve where the estimated track is located relative to the node and to neighboring nodes that are

expected to receive the broadcast. The rate at which updated position tracks are broadcast may

also be reduced to limit the communication load of the network. All aspects of tracking algo-

rithms are treated in detail in Section 6.

Demonstration of real-time tracking required the development of acoustic signal processing

algorithms to detect targets and determine directions. A wideband array processing algorithm

was developed for this purpose and was implemented and used for real time tracking demonstra-

tions. This algorithm is based upon a new approach to direction finding with arrays. It depends

upon the following facts. First, the spatial correlation function of a plane wave is like a long

mountain range with the ridge line perpendicular to the direction from which the signal is arriv-

ing. This fact does not depend upon the temporal bandwidth of the plane wave. But the two

dimensional spatial Fourier transform of a mountain range is another long mountain range, but

this time passing through the origin of the two dimensional spatial frequency space and rotated by

ninety degrees to be oriented in the direction of the arriving signal. The mountain ranges for

independent plane waves arriving from different directions are simply added together. The wide-

band algorithm looks for these mountain ranges radiating from the origin. Their directions are

target directions and their heights are proportional to signal strength.

The wideband algorithm replaced a more conventional one that was developed and used for

initial DSN experimentation. The new algorithm provided more reliable detections and direction

finding while requiring fewer computations than the original. Acoustic detection and direction

finding algorithms are discussed in Section 4.

Whereas acoustic arrays are appropriate for surveillance and track initiation as well as for

tracking, the TV sensors have limited fields of view and are more appropriate for improving

tracks than for initiating new ones. The TV cameras were developed to function as autonomous

cued measurement resources. They operate as follows. The TV subsystem receives position

track estimates and calculates which target it is most likely to be able to detect. It then slews to

where that target is predicted to be and captures two frames of data which are used to attempt to

4

detect the target on the basis of motion in the image frame. If there is a detection, then, using the

known orientation of the camera and the position of the detection in the image frames, the target

azimuth is estimated and sent to the distributed tracking system which integrates it with all other

measurements. This is a closed loop system in which the TV uses target position tracks to select

and find targets and produce measurements that subsequently improve tracks. The algorithms

used by TV subsystems to select targets, control the TV subsystem, detect targets and provide

azimuth measurements to the tracker are described in Section 5.

A major part of the Lincoln Laboratory DSN effort was the development of the test-bed sys-

tem. It contains eleven nodes interconnected by Ethemets and radio communication links. Every

node contains from one to three single board microcomputers that perform tracking and commu-

nication functions. Six of the nodes also contain acoustic subsystems consisting of a small

microphone array and the electronics required to collect and process acoustic data in real time.

Some nodes are installed in vehicles for field deployment. Two of the nodes are dedicated to TV

functions. The test bed also includes microwave communication equipment that allows the test

bed to be split into three physically separated parts, an essential capability for experiments

involving mobile nodes separated by more than about a kilometer. Two UNIX workstations and

a VAX computer constitute the remainer of the system. They are employed for software develop-

ment, experiment control, and other analysis functions.

The test bed is a large hardware and software system that required substantial effort to

develop and use. Section 3 describes the hardware and the system software. Section 7 describes

the application level control and tracking software. Section 8 provides more details about the

communication system. Sections 10 and 11 address the software development process and les-

sons that were learned about the development of such complex distributed systems. We have

attempted in these last two sections to distill and document information that we believe may be

particularly useful to future implementors of Distributed Surveillance Systems.

Sections 12, 13, and 14 cover problems other than tracking and test-bed development and

use.

Section 12 treats the problem of how to estimate the network node locations using range

measurements between pairs of nodes. A distributed self-location algorithm is described along

with sample results obtained using simulated range measurements. Autonomous portions of the

5

algorithm operate at each node. Each node estimates its position relative to other nearby nodes.

The algorithm is iterative and continues to run as long as there are changes in the estimates. The

range measurements needed by the algorithm could be obtained using radios to measure the tran-

sit time of electromagnetic signals between the nodes. Radio features and protocols to measure

ranges, even with unsynchronized nodal clocks, are described.

Section 13 treats multi-site data collection: how to collect tracks from many nodes in a net-

work and how to resolve differences between tracks provided by different nodes for the same

target. The track combining algorithm developed for tracking can also be used for combining

similar tracks during multi-site data collection; but this solves only part of the multi-site data

collection problem. Section 13 discusses other aspects of the problem, especially the close cou-

pling between communication and multi-site data collection issues.

Section 14 summarizes the results of a preliminary investigation of the application of

Artificial Intelligence approaches to some acoustic data interpretation problems in an acoustic

DSN.

The last Section discusses remaining DSN research and development issues.

6

2. INTRODUCTION TO DISTRIBUTED SENSOR NETWORKS

Distributed Sensor Networks (DSN) are surveillance and tracking systems that use many

geographically distributed sensors. A pure DSN system would be composed of many autonomous

sensor/processor nodes interacting to provide surveillance and tracking functions for users. All

essential system functions, not just sensing, would be distributed and implemented in the form of

interacting autonomous processes. The system would automatically adapt to changes in the

number, location, and sensor capabilities of the nodes. It would contain no single points of

failure. System performance would be determined only by the capabilities inherent in the set of

sensors available to the system. Thus the performance of the system would change incrementally

as individual sensor/processor nodes are added or removed.

This is the idealized DSN system concept. It is at one extreme of a range of options. Con-

sider Table 2.1. It singles out sensing, data processing, and control as important surveillance sys-

tem functions and suggests three possible levels of distribution: non-distributed, partially distrib-

uted, and fully distributed. The shaded boxes in the table highlight the emphasis of the Lincoln

Laboratory research effort. We concentrated on full distribution for sensing and data processing,

but our goals in the area of system control were more modest, emphasizing only partial distribu-

tion. All functions in an ideal DSN would be fully distributed.

The lowest level of distribution in Table 2.1 corresponds to traditional surveillance systems,

typically radar systems, in which a single large sensor is employed for surveillance of an area.

With only one sensor, the issue of the level of distribution of other functions does not arise.

The next level of sensor distribution is when the area covered by a single sensor, perhaps a

traditional monostatic radar, is not adequate. It then becomes necessary to replicate and distrib-

ute many copies. Each has full surveillance capability, but only within a limited area. Such a

distributed sensor system might employ any level of distribution to accomplish other critical

functions. But the most natural thing is for both the data processing and control to be partially

distributed.

First consider the data processing. Each radar can have associated processors that perform

all radar functions. This eliminates the need for unrealistically large communication bandwidths

from the sensors to some central processing facility, only tracks need be communicated. Radar

7

00
c*

cU

cn

0u 0

0U
CC

0)00
C 0

C* * 00
04) o

-D $ jf 0 0)
0 C C M

cc

uoiinqjinsia ;o 99jBoO

tracks or detections from multiple sites could be combined to provide improved system perfor-

mance, but if each radar can be designed to provide adequate performance within its own area

and there is limited coverage overlap there is little motivation to do this. Thus the resulting data

processing system is distributed but there is little interaction between the sensors. It is because of

the logical simplicity of the interactions that we assign only a moderate degree of distribution to

such systems.

It is natural for the control for a multiple monostatic radar network to be partially distrib-

uted in the same sense as the data processing. Sensor sites can operate quite autonomously,

interacting to a limited extent with other sites or with a central network coordinator. Sites may

provide data to several users, but are not controlled by any external users.

Computer networks often contain server processes from which remote users can request ser-

vice. This is similar to the radar network just described except that the server function becomes

the primary function whereas local surveillance for specific users is the primary function of the

radars. Servers distributed within a computer network constitute a form of distributed control of

the network and its resources.

The server process idea can be adapted to distribute the control function in a DSN. Each

node can respond to a community of users, agreeing to be controlled by any member rather than

by a fixed master. This is slightly more distributed than site-by-site autonomous operation. It

provides for multiple masters, but does not necessarily address how to coordinate them or how to

select only one. This is the form of distributed control that we have adopted for the DSN test

bed. Nodes act as servers. They start, stop, change parameters, provide data, etc., all under exter-

nal command with little concern for the source of the commands. Thus several users and network

controllers can operate simultaneously within the network. However, users are responsible for

avoiding conflicts. This approach, with some modifications such as the use of priorities and

software locks to avoid conflicts, could also be used to control more operational DSN systems

without the need to fully solve some difficult problems associated with more completely distri-

buted control. For example, a higher level of distribution of control might require that nodes

interact with each other to adaptively design a control hierarchy. How to do this, and if this is the

right approach are unanswered questions.

9

For sensing and data processing we concentrated upon the highest level of distribution. The

highest level of sensor distribution is required when a single sensor cannot cover the entire area

of interest and, in addition, the data from several geographically dispersed sensors are required to

perform the surveillance function, even in a local area. Underwater surveillance systems employ-

ing networks of hydrophones are fully distributed in this sense. Networks of multistatic radars

would also be fully distributed.

We worked on an atmospheric version of the underwater surveillance problem: the detec-

tion and tracking of aircraft using networks of geographically distributed microphone arrays. The

range of the individual microphones is limited and measurements from two or more geographi-

cally separated sites are required to confidently locate and track an aircraft. We also elected to

include imaging sensors, TV cameras, which have similar characteristics. This allowed us to

investigate how to use complementary sensor types and to demonstrate that our results have gen-

eral applicability.

The full range of distributed data processing options is theoretically available when the

sensing function is fully distributed, although fully centralized data processing is not likely to be

practical. For example consider a system of many small acoustic arrays. Except for small net-

works, completely centralized processing is impractical because of the large communication

capacity required to transmit all the sensor data to a central site. A substantial amount of data

reduction is required at each sensor site to keep communication requirements within reasonable

bounds. For acoustic arrays this could be done by signal processing, detection and direction

finding algorithms at each sensor site that convert raw data rates of several tens of kilobits per

second per site to only a few hundred bits per second per site. The resulting data rates make it

practical to transmit the reduced data to a central site for final processing for much larger net-

works. Such a processing system would be only slightly more distributed than a network of

autonomous monostatic radars. Very large systems might employ several "centralized" process-

ing sites which might interact with each other in the same way as autonomous monostatic radars

might interact. But the most general solution is to fully distribute the data processing function.

Our view of fully distributed surveillance is that a processor should be co-located with each

sensor, and the processor should perform surveillance of the area within which the co-located

sensor can detect targets. Each site should transmit information to nearby sites and each site

10

should expect to receive information from its neighbor sites. We have concentrated our efforts

upon this level of data processing distribution.

DSN systems could be deployed in many different geometries and used for many different

purposes. The geometries include thin barriers for early warning, thick barriers as part of barrier

defense systems, small systems for local area or point defense systems, or large systems for wide

area coverage. Figure 2.1 illustrates some deployment options. Each dot represents a

sensor/processor site. The separation between sites would be sensor and application specific. A

system using acoustic sensors might have separations of only a few kilometers whereas a system

of radars might have much larger separations. A typical system would have sensor spacing

UNIFORM COVERAGE THINNED COVERAGE

/I N

TRIP WIRE * * .: *• • . 0 0 0\T q0" SINGLE NOT APPLICABLE
%,,, ,./ SINGLE

SENSOR COVERAGE

*00 ~ ON 010 0 00 0 0 00 0 0

THNICK BARRIER 0 •0 0 •0 0 0 0

FULL AREA * 0 a 0 0 6 0 00 0 0 0

00

0 0 0 0

COVERAGE CONTINUES

Figure 2.1. Deployment options for Distributed Sensor Networks.

I1

adjusted to be slightly smaller than the reliable detection range of each sensor. This provides

complete cost-effective coverage with no holes and with some redundancy that will provide

robust system operation in the face of nodal failures.

Figure 2.1 also shows thinned deployments which might be used for some applications to

reduce system cost. The idea is to recognize that continuous coverage may not be required and to

exploit this fact to reduce the number of elements in the system. For example consider the case

of a thick barrier that acts as an early warning and cueing system for other sensors or weapon sys-

tems. A first line of sensors could serve to provide a pre-alert for a localized area along a long

front. The second line could then be used for more specific cueing. The important point to note

is that DSN systems are not restricted to wide area systems with many nodes uniformly distrib-

uted. They can be designed for use in many different applications.

12

3. TEST BED

3.1. Introduction

The Lincoln Laboratory DSN test bed consists of hardware and software systems intended

to support the development and demonstration of distributed tracking algorithms. It can be used

in several different modes and can be split into smaller test beds that can be independently used

for different purposes. The modes include data acquisition mode, real-time mode with

prerecorded or simulated data, and real-time mode with live targets. These modes have all been

used extensively during the project. The parallel use of different parts of the test bed has also

been a useful feature. In addition, the test bed includes general purpose computers, primarily a

VAX 11/780, for data analysis, algorithm development, and software development.

Section 3.2 describes the test-bed hardware and Section 3.3 describes the system software

with emphasis on the basic Nodal Run Time System (NRTS) that supports tracking and commu-

nication functions. Application level distributed surveillance software is covered separately in

Section 7. Section 8 provides additional information about the communication hardware and

software. Section 10 contains additional information about the software development process

and tools.

3.2. Test-Bed Hardware

Figure 3.1 is a block diagram of the entire DSN test bed. It consists of 11 separate com-

puter systems identified as nodes, three general purpose computers (a VAX and two UNIX

workstations) and communication equipment (Ethernet and microwave radios) to interconnect the

elements. Some of this equipment is installed within a DSN laboratory area and some of it is

installed in three vehicle-mounted mobile enclosures. Except during field operations all nodes

and other computers are interconnected by a single physical Ethernet. In this configuration the
vehicles are parked adjacent to the laboratory.

The test-bed vehicles, one of which is shown in Figure 3.2, are used to remotely deploy

nodes for experiments. When they are deployed for data collection they operate independently

without intemodal communication. For live distributed-tracking experiments, the remotely

deployed mobile systems are interconnected with each other and with the laboratory portion of

13

MICROWAVE EQUIPMENT TO SPLIT TEST BED INTO TWO OR THREE SEPARATE ETHERNETS

NODE NODE NODETV V
1 2 3 NODE NODE NODE TOD TVD

MOBILE MOBILE MOBILE 4 8 9 NOD NOD

10 771

I ~ ETHE RNETI

L UNIX
VAX780 UNIX

W ORKSTATION J(UNIX WORKSTATION

NOTE:

(A) NODES 1-3 IN FIELD DEPLOYABLE TRUCKS
(B) NODES 1-6 HAVE ATTACHED ACOUSTIC ARRAYS
(C) NODES 7-9 CAN BE USED AS INTERNET GATEWAYS
(D) NODES 1-9 CAN BE USED FOR TRACKING
(E) TV CAN BE INSTALLED IN MOBILE UNIT0
(F) WORKSTATION CAN BE INSTALLED IN MOBILE UNIT0

14

the test bed by commercial microwave equipment. Each remotely deployed vehicle contains a

short internal Ethernet that interconnects equipment within the vehicle enclosure. To maintain

communication with the laboratory portion of the test bed. the vehicles are deployed within line-

of-sight to microwave antennas installed on the roof of the DSN laboratory. The sites have usu-

ally been within 3 km of the laboratory although the communication system will operate up to

10-ki ranges.

It ik also possible to configure the vehicles to perform live distributed-tracking experiments

while completely separated from the DSN laboratory, although this has not been done. It

requires that one of the UNIX workstations be moved from the laboratory to one of the vehicles.

In this configuration the vehicles could be deployed anywhere, with separations of up to 10 ki.

and used to perform DSN experiments. The workstation would serve to control the experiment

and display results.

Microphones and TV cameras are used as the sensing elements. Figure 3.3 shows one of

the microphones. a standard GenRad laboratory quality electret microphone with a flat frequency

0

I .'l r 3.3 %Itr ropliont, ii pth preamplilwr atta -hed to wooden lo k for ground-lci- / ila acl,,,i pmcppp

_-mP ki itdip ri t ep ot n ucrophont% head.

15

response from 20 Hz to 20 kHz, with a foam wind screen attached. The microphone is attached

to an 8-in-square wooden block with spikes attached to hold it in place in the ground when it is

deployed. Figure 3.4 shows nine such microphones deployed in a grassy area as a small acoustic

array that will be used for aircraft detection and acoustic direction finding. The distance between

the most separated microphones in the the photo is 6 m. There are enough microphones to deploy

six such arrays at one time.

The microphones require periodic calibration and testing during periods of prolonged use.

For many purposes we have found it adequate to permanently locate a small loudspeaker near

each array and to use it to generate a test-tone. However. we also individually calibrate each

microphone using a laboratory grade calibrator designed for use with the microphones. These

procedures have been satisfactory for the experimental test-bed system but better techniques

would be needed for an operational system.

03q

t~l~re .4 I-eld el~* pu't Jla mm'-~lircq~u~n' ara0

I ~Ut ? Jcd I'p()~l~l('I '/I,? UI 1U r6

Figure 3.5 shows one of the two TV cameras. Each camera is enclosed in a waterproof case

and the mount is designed for outdoor operation. The mount azimuth and elevation as well as the

camera zoom can be remotely controlled.

-ilrc 3.5. It vath r pr tc it ld a*1 amera installed on renion olrol ou/11.

Each of the nodes is built around a basic unit called a Standard Nodal Computer (SNC).

The SNC is a small but flexible multiple computer system that uses commercial single board

computers on a Multibus. The computers are early versions of the Stanford University Network

(SUIN) computer boards containing 256 bytes of memory and a Motorola MC68000 processor.

The MC68000 boards were manufactured by Pacific Microsystcins and installed in rack-mounted

SNC units designcd and built at Lincoln Laborator-y. Figure 3.6 shows one of these SNC units

with boards installed. Each SNC unit can accommodate up to three processor boards. It should

be noted that commercial hardware and software technology progressed quickly during the DSN

project and that standard commercial workstations and software could now be used in place of the

less pow,\erful, more customized hardware and software that were developed for the test bed.

17

AliA

Fiure 3.6. Standard Vodal Crnmpuur (SNC) used in the DS1.V 1e.t bed.

There are three kinds of nodes in the test bed. These are acoustic/tracking nodes. TV nodes,

and gateway nodes. Acoustic/tracking nodes provide acoustic azimuth measurements using small

acoustic arrays. They also perform tracking and can be used without an attached acoustic sensor

subsystem. When operated without the acoustic subsystem they use sinulaled acoustic data. TV

nodes collect visible TV images and derive measurements of aircraft azimuths from the images.

Even when radios are used to interconnect physically separated parts of the test bed. the

communication system still appears as a single logical Ethernet to the acoustic/tracking and TV

nodes. This is done by using a few node, as gateway nodes that transfer data between Ethernets

18

and radios. Only the gateway nodes are aware that the system does not consist of a single Ether-

net. One gateway node is required for each physical Ethernet that is interconnected with others

by radio. The function of gateway nodes is to provide a specialized communication service that

isolates the rest of the nodes from communication complexities.

When the vehicles are not deployed remotely, they are attached directly to the laboratory

Ethernet and neither radios nor gateways are required. A single physical Ethernet can be used to

interconnect all nodes, and gateway nodes can then be reconfigured to serve as acoustic/tracking

nodes.

Figure 3.7 is a block diagram of a standard acoustic node. It contains three MC68000 sin-

gle board computers, additional memory and floating point processor boards, an Ethernet inter-

face, a floppy disk system, an acoustic Signal Processing Subsystem (SPS) and some simple reset

hardware to expedite remote recovery from catastrophic nodal failures.

The three MC68000 computers are the heart of the system. They handle all tracking and

communication tasks. They each contain private memory and operate independently of each

other. They interact only by message passing through the separate 512-kB shared memory board.

The memory board also serves as the communication buffer between the node and the Ethernet,

which is the primary means by which nodes interact with each other. The floating point board

provides floating point hardware for all three of the MC68000s.

The floppy disk system on each node has three primary uses. First, nodal software is stored

on the disk. Second, the disk can be used to record data during experiments. Third, simulated

acoustic detections and direction estimates can be stored on the disk and used as input for con-

trolled experimentation.

A serial port on one of the MC68000 boards is attached to a remote reset device and a

9600-baud line which is attached in turn to either a local console or a remote computer by an

RS-232 line. This processor is denoted as P1. The other two are P2 and P3. The remote reset

device allows a local or remote operator low level control of the node to reset and reboot it when

there are catastrophic failures. The remote reset device simply monitors the line for a special

reset code which causes the processor to be reset. With PI operational, P2, P3 or the SPS can be

reset by a secondary reset device.

19

UA O

z -

E 0

(0 -r

CcCccZ

Ix (n

RS

02

The SPS communicates with the rest of the system using one serial port and one parallel

port. The parallel port delivers acoustic detections, including estimates of source directions and

power levels, to the tracking software installed in the MC68000s. The serial port is used for con-

trol purposes.

Figure 3.8 provides more details about the Signal Processing System. It is used for data

acquisition as well as signal processing. The PDP 11/34 is the intelligent core of the SPS. In

data acquisition mode it collects acoustic data from the A/D system and records it on a standard

1600-BPI digital tape. In real-time signal processing mode it obtains digital acoustic data either

from the A/D or from tape and uses the FPS-120 array processor to obtain the acoustic detection

data required by the tracking system. The disk system is only used for software storage.

Data obtained from the A/D system are time stamped using a time signal, accurate to a few

milliseconds, provided by a satellite time clock. Thus data recorded on tape have permanent

absolute time stamps. In addition, and this is important, detections provided to the tracking sys-

tem during real-time experiments are correctly time-stamped. These time stamps are necessary

1 TO MULTIBUS
INTERFACE HARDWARE

L
P FIT

PARALLEL
PORT POP 11,34 CONSOLE PORT

INTERFACE

i i li UNISUS

DISK TAA/D SATELLIT6 P~2
SSESYTMCLOCK POCSO

I
SIGNAL

CONDITIONING

N MICROPHONE
U ARRAY

Figure 3.8. Acoustic Signal Processing Subsystem (SPS).

21

TO REMOTE COMPUTER

LOCOTE
CORESET

CAMERA TV CAMERA DVC
MOUNT II

VIDEO

Buss RESET

CAMERA A 0 & SECONDARY MC68OIw MC68000 512 kll LATNG EERE
MOUNT PROESOR FRAME REMOTE ITWTH SHARED INTEFNT

CON4TROL PRCSO UFFER RESET 256 k9 258 111 MEMORY PROCESSOR NTRFC
MEMORY MEMORY

MULTIBUS

Figure 3.9. Standard TV node for the DSN test bed.

TO REMOTE COMPUTER

REMOTE
RESET
DEVICE

Figure3.10. atewaynodef R EDS EsT be

MICOWVE MC800 FO22N

for the distributed system to correctly combine data from several sites. The small antenna used to

obtain the signal from a geosynchronous satellite can be seen at the top left of the instrument

enclosure in Figure 3.2.

The microphone array can contain up to 12 sensors. Signal conditioning equipment

amplifies the microphone outputs and passes them through an anti-alias filter with a 750-Hz cut-

off frequency. Signals are then sampled at 2048 samples per second. The A/D system is a "gain

ranging" system that provides 95 dB of operating range. Each sample consists of a 14-bit (13 bits

plus sign) digitized signal and two additional bits indicating which of four gain values apply.

The gain is adjusted for every sample to keep the A/D converter input as large a possible but less

than 80%k of full scale. This pseudo floating-point sampling method minimizes system gain

adjustment problems that might otherwise arise. It does require additional processing to convert

the A/D output into a form that is more readily usable. For real-time signal processing this

conversion is performed within the FPS- 120 array processor. There is no format conversion dur-

ing data collection. Conversion of the collected data is done as needed when the data are used.

Gain ranging for every sample is possible for an acoustic system because the overall data rates

are modest, compared with data rates that might be required for other sensor systems such as

radars. For example the digitization of 12 acoustic channels at 2048 samples per second involves

only about 25,000 conversions per second and a single A/D is used with a multiplexer to do the

job.

Figures 3.9 and 3.10 show the other two standard node configurations. They should be

compared with the standard acoustic/tracking configuration of Figure 3.7. The difference

between the acoustic/tracking and the TV configurations are that the acoustic SPS is replaced by

TV-related equipment, and one MC68000 board is removed because two processors are sufficient

for all the TV-related functions. The TV interface to the Multibus consists of three functional

elements. One is the camera mount control used to control the mount and camera zoom as well

as to measure the actual position of the mount and zoom. A second is the A/D and frame buffer

unit that serves to digitize and store TV images. The third is the video processor which performs

signal processing operations on the digitized TV images. The video processor and frame buffer

are interconnected by a private high speed digital bus to avoid excessive Multibus traffic.

23

The gateway configuration shown in Figure 3.10 is an even more stripped-down version of

a standard node. It contains a single MC68000 board, a microwave radio interface, and

microwave radio equipment.

Figure 3.11 is a photograph of a complete acoustic/tracking node and a gateway node as

installed in one of our vehicles for remote operation. The left rack contains the FPS-120 array

processor, acoustic signal conditioning, and A/D equipment. The center rack contains the digital

tape drive and PDP 11/34 for the SPS as well as the gateway SNC chassis and TI multiplexer. At

the bottom of the center rack is some of the microwave radio electronics. The right rack contains

the acoustic SNC chassis plus some microphone power supplies and ancillary test equipment.

N.N

IIg

Figiure 3. 1. A4coustic trac'king node on , gate ay node installed iithin experimental vehicle.

24

The disk in the middle of the right rack is for the SPS and the two at the bottom of the left rack

are for the two SNC systems. All three racks of equipment are shock mounted to the floor to pro-

tect them during transport.

3.3. Test-Bed Software Systems

Three operating systems are used in the Lincoln Laboratory DSN test bed: UNIX, RSX11,

and NRTS. NRTS is a system that was developed as part of the DSN project to serve as the

operating system for the standard nodes. (A new test-bed system could probably use, with minor

modifications, more recent commercial computer workstations, including their operating systems,

network communication capabilities and software development tools, to replace the SNC systems

and NRTS.) UNIX is the operating system for the general purpose VAX 11/780 and user work-

stations. It is also the primary environment for software development. RSX II is a Digital

Equipment Corporation real-time operating system that is used by the acoustic SPS systems.

Both UNIX and RSXI I are standard and should require no further explanation. The following

provides more details about NRTS, primarily from the user's point of view.

Figure 3.12 illustrates the basic user interface in NRTS. There are five kinds of service pro-

vided to users as indicated. These are process creation and control, input/output, string manipula-

tion, memory management, and timing and clock-related services. The interface was designed to

be similar to that provided by the UNIX operating system. Application programs are written in

the C language and all services are accessed by subroutine calls with UNIX-like syntax.

APPLICATION PROGRAMS

APPLICATIONS INTERFACE

S PROCESS MEMORY I INPUT, STRINGS CLOCK
CREATION I ALLOCATION OUTPUT

Figure 3.12. Node Run Time System (NRTS) application programming interface.

25

APPLICATION INTERFACE SERVER
PROGRAM H PROCEDURES PROCESSES

NODE RUN-TIME KERNEL (NRTK)

Figure 3.13. VR TS organization.

FILE

I INTER-PROCESS
DEVICE PORT

TERMINAL I PARALLEL I LOCAL REMOTE
DEVICE PORT PORT

Figure 3.14. Hierarchical structure of the file oriented input-output system.

26

There are three parts to NRTS: the kernel , the servers , and the interface as indicated in

Figure 3.13. NRTK, the nodal run-time kernel, is the core of of the system. It provides facilities

for process creation and control, process synchronization, primitive 1/O, and basic memory allo-

cation. The servers are processes that serve the applications. These include device servers and

the directory server for naming devices and inter-process files. Servers are not accessed directly

by the application but through a library of interface subroutines.

NRTS programs consist of a set of load modules with at most one load module per SNC

processor. Each module consists of procedures and data. At system initialization a single user

process is created. This process is a user-defined procedure that the user has selected as the first

process to run. It can perform any task of the user's choosing. It usually initializes user data

structures and creates additional user processes. There is a single initialization process for each

SNC, independent of how many processors contained in the SNC. It can create processes within

the SNC where it is running but not in any other SNC. Aside from the initial main process, no

inherent process structure is imposed on the load module. Processes are started and terminated at

run-time via user requests.

Process initiation involves three steps. A new process is created using a "fork" system call.

Parameters for the process, such as stack size, are set via a separate command and finally, the pro-

cess is set to run a particular procedure through an "exec" system call. A process terminates

when its outermost procedure returns or when it calls "exit." However, except when a problem

occurs, most processes in the real-time test-bed environment do not terminate. The NRTS way of

handling processes is similar to that of the UNIX operating system.

Although NRTS does not provide a general purpose tile system, its 1/O system uses the

UNIX file model. The I/O system supports devices and inter-process ports as special files as

illustrated in the file hierarchy shown in Figure 3.14. Devices include serial devices such as ter-

minals and parallel devices such as floppy disk controllers and the parallel interface between the

SNC and SPS. Programs may open, read, and write ports and devices through a library patterned

after the UNIX standard I/O library. A simple but essential broadcast facility is provided as well.

27

Inter-process port files are functionally similar to UNIX pipes. Data are passed through

ports on a first-in-first-out basis. Output routines are provided to pass data to a port as discrete

messages. Other input routines remove messages from ports and deliver ther' to the user pro-

gram. There is a maximum number of messages which may be on the port at a given time.

Processes attempting to write to a port when the number of messages is at the maximum are

delayed until another process reads from the port. When there are no messages on a port, a reader

is delayed until another process writes to the port. A port may have several readers and writers.

Message delivery is assured only if the writer and the reader are within the same SNC.

Files in NRTS have UNIX-style pathnames. Each node has its own name tree and the entire

network has a name tree as well. The network name tree is composed of the nodal name trees

grafted on to a single network level tree whose leaves are the names of the nodes. Full pathnames

are always used although names may be given relative to the nodal name tree or the network

name tree.

One standard set of files is created when the system is initialized. Processes can then create

files with the restriction that a process can create a file only within the node in which it is

running. This is a "local" file. Remote files are those on other nodes. The creating process must

provide the name of the file and the maximum number of allowed messages if it is a port. Once

created, files are opened, closed, read and written in much the same way as in UNIX. Local files

can be opened for reading or writing; remote files can be opened for writing only. File open com-

mands return a FILE type variable. This variable is a pointer that identifies the file for read and

write routines.

NRTS supports many 1/O routines with syntax and semantics identical to UNIX. These are:

fgets, fputs, fscanf, fprintf, fread, fwrite, and ungetc. The string format routines sscanf and sprintf

are also available. In addition, NRTS provides the procedures fgetc and fputc, which have syntax

and semantics identical to the UNIX macros getc and putc.

There are three standard pre-defined FILE variables in each NRTS load module. These are

stdin , which is used for input, and stdout and stderr, which are used for output. These are similar

to the identically named standard files in UNIX. There are minor complications in their usage

due to the distributed nature of the test bed but their purpose is the same as that of the UNIX stan-

dard files.

28

Message broadcasting is an essential NRTS I/O capability. Application software uses it to

exchange distributed tracking data. The application programs create ports to receive broadcast

messages by creating files in a special directory called '/cast." Reading from such a broadcast

port is the same as for any other port. Writing to a broadcast port is done by a routine with syntax

and semantics similar to the UNIX fwrite. The arguments include a character string representing

the the name of a file in the /cast directory, and the message is sent to all ports in the network

with the name /cast/<string>. If there is a local port with that name, the message is placed there;

in addition, the message is broadcast to other nodes. Nodes that receive the message place it on a

port with the same name if such a port exists. The choice of broadcast message file names is left

to the user.

NRTS provides several other services at the applications level. These include facilities for

node identification and memory allocation, as well as some clock-related services. Applications

may occasionally utilize the inter-process synchronization and communication facilities of sema-

phores and queues. Node identification routines allow a process to determine the identity of the

node in which it is running. Allocation and deallocation of memory are by routines that have

identical syntax and semantics to the UNIX procedures for the same purposes. Memory is always

allocated from a processor's local memory. The shared memory is not directly available to

application programs.

NRTS provides two clocks which differ from the UNIX system clock. One is a system-time

clock that starts when NRTS is started and can be read or waited upon for a user-set interval. The

other is an experiment time clock. The user can start, stop and set this clock as well as read it or

wait until a user-set time. The user can also set the rate at which this clock 'ticks' relative to the

system-time clock when it is running. The latter clock is used for most application purposes. In

particular, it provides the 'real' time standard for the applications software while an experiment is

in progress. The other clock is used when fixed system time delays are needed for some reason.

29

4. ACOUSTIC ARRAY PROCESSING ALGORITHMS

4.1. Introduction

The use of multiple small microphone arrays to detect and track low-flying subsonic aircraft

required the development of detection and direction finding algorithms for the arrays. The sensor

array direction finding problem is well known and has been extensively investigated [1-5]

although not for the DSN aeroacoustic aircraft surveillance application. The array is usually

assumed to be in the far-field of the sources and the signal at the array is modeled as a planewave
for each source. Each planewave is characterized by a direction of propagation, a speed, and a

temporal frequency spectrum. Sensor array processing often reduces to the estimation of one or

more of these planewave parameters from the space-time wavefield sampled by the array.

The most common detection and direction finding method for sensor arrays is "beamform-

ing"; also called "delay-and-sum" processing. In this technique, illustrated in Figure 4.1, a source

direction is assumed and time-delays are calculated, relative to a reference sensor in the array,

for the assumed signal passing over the array elements. These delays are applied to the time

series received at the array and the delayed signals are added together to form a "beam". The idea

is that if the delays are correct then the signal will add coherently and noise will add incoherently.

WAVEFR0NT

0ADJUSTABLE
DELAYS

I POWER

Figure 4.1. Delay and sum beamforming.

31

Many beams are formed, covering the range of possible directions for signal arrival, and a power

detector is applied to each beam. Beams that maximize power are assumed to correspond to the

correct signal directions.

A variation of this method is the "frequency domain beamforming method" which can be

applied when the signal is narrow band or if one is willing to search over the entire band of fre-

quencies for wideband signals. For each frequency, the frequency domain method reduces to a

spectral analysis problem in the spatial wavenumber domain and thus is a "frequency-

wavenumber" method. One advantage of the frequency domain method is that it can easily be

modified to act as an optimum adaptive direction finding method [6]. The modified algorithm is

often referred to as the Maximum Likelihood Method (MLM) of frequency-wavenumber

analysis.

The DSN project initially chose to use the MLM version of the frequency-wavenumber

method and to apply it at a subset of frequencies within the band where signal-to-noise ratios

were expected to be largest. The real-time implementation was limited by computational con-

straints to a maximum of eight frequencies for each analysis interval. The frequency selection

was done by performing a spectral analysis on a single microphone signal and choosing the fre-

quencies corresponding to peaks in the spectrum. This algorithm was implemented and used dur-

ing early phases of the project.

The frequency selection for the initial algorithms was done without benefit of any signal-

to-noise gain from the microphone array. This tended to cause the algorithm to become locked

onto loud signals with many harmonics and to not find secondary signals. The alternative of per-

forming the spatial analysis at every frequency would have increased the signal processing load

by another order of magnitude and exceed the capacity of the test-bed hardware by an equal

amount. We also could have taken the time-domain beamforming approach but that would also

have exceeded the real-time capacity of the general purpose digital hardware in the test bed.

Small special-purpose digital hardware could have been developed for either alternative but this

was beyond the scope of the project.

The need for improved detection and direction finding performance within existing

hardware computational constraints motivated research that led to the development of a new kind

32

of array processing algorithm. The result is a computationally efficient method for estimating the

bearings of multiple planewave sources with unknown frequency characteristics within a wide

band. The method uses the zero-delay covariances of the complex analytic representations of the

sensor signals of a planar array to estimate the wavenumber spectrum. This spectrum determines

the source bearings uniquely over the entire 3600 range. The computational requirements of this

method are of the same order as frequency-wavenumber analysis on a planar array at a single

frequency.

The following Sections 4.2 through 4.4 provide more information concerning the basic con-

cept, describe the wideband algorithms, and show examples of experimental results obtained

using the algorithm. This material is covered in more detail in References [7] and [8].

4.2. Theoretical Basis for Wideband Array Method

The wideband array processing method is based upon the basic properties of covariance

functions and frequency-wavenumber representations for zero-mean homogeneous random fields.

Let s (t, x) be such a field where t and x represent time and three-dimensional space, respec-

tively. The space-time covariance tunction of s (t ,x) is given by

R (t,p)=E [s (,x)s * (t -,x -p)] (4.1)

and the frequency-wavenumber spectrum is the multidimensional (time and space) Fourier

transform of R (T,p):

P (k ,w)= .f R (t,p)eJ k P)d t d p (4.2)

where k "p is the scalar product between the vector quantities. Consistent with this we define the

zero-delay wavenumber spectrum Pzo (k) as

Pzo (k)=_R (O,p)ei k 'Pd p. (4.3)

Note that P (k ,o) and Pzto (k) are related through the integral

PZD (k)= f P (k ,o)d (o. (4.4)

33

That is, the zero-delay wavenumber spectrum is obtained by collapsing P(o,k) onto the

wavenumber space k.

The underlying theoretical basis for the wideband method is the fact that, for a planar array,

the zero-delay wavenumber spectrum can be used to determine the bearing of planewave sources.

Let s (t-ax) be a planewave propagating in three dimensions. The vector a points in the

direction of propagation and has magnitude equal to one over the magnitude of the propagation

velocity of the planewave. The position vector x is a three-dimensional vector. If the bearing

and elevation angles of the vector ax are 0 and 0, respectively, then the projection of the wave

onto a two-dimensional plane P is the planewave s (--a. .x), where ap is the projection of a

onto P and x is the two-dimensional vector position in P. At any instant of time to, the

wavefield in the plane P has a constant value along any line orthogonal to 0, the direction of pro-

pagation of the planewave. The spatial autocovariance function also has the same property.

Therefore, it can be shown that the zero-delay wavenumber spectrum, which is the Fourier

transform of this two-dimensional spatial autocovariance function, is a distribution (delta func-

tion) in the two-dimensional wavenumber space which is confined to a line passing through the

origin with an azimuthal angle 0. Furthermore, the value of the distribution along the line is pro-

portional to the temporal spectrum of the planewave scaled in frequency (see Figure 4.2). If the

signal has a temporal spectrum S (o), then the radial distribution is proportional to S (o/ I axp I).

Thus the zero-delay wavenumber spectrum contains temporal spectrum information as well as

bearing information. The magnitude of the projected slowness vector ap is equal to the cosine of

the angle of elevation multiplied by the inverse of the wave speed. If the wave speed and the

temporal spectrum are known, the elevation angle of the plane wave can be determined by

stretching the radial wavenumber spectrum to match the temporal spectrum.

Observe that if the planewave is real, the temporal power spectrum is even. In that case, the

distribution along the axis will be the same whether the planewave came from bearing 0 or

0+1800. This problem can be overcome by temporally prefiltering the sensor signals to obtain

complex analytic representations which :ontain no negative frequencies. This way, if the

planewave is coming from bearing 0, there is zero contribution from the direction 0+1800 in the

wavenumber space.

34

s(w)

(a)

P1,,(k,. y,

COS(v S(P vO/coM o

I.k.

* (b)

Figure4.2. Spectral mapping properti of the :ero-delay wavenumber spectrum. (a) Temporal
power spectrum of a planewave coming from the direction with elevation 0o and bearing 60.
(b) The zero-delay wavenumber spectrum of the same planewave on the array plane.

The homogeneous field s (t r) formed by the sum of uncorrelated planewaves has a zero-

delay wavenumber spectrum which is the sum of the zero-delay wavenumber spectra of the com-

ponent planewaves. Thus for multiple planewave sources the zero-delay wavenumber spectrum

has nonzero contributions only in those radial directions corresponding to source directions.

4.3. Wideband Algorithm for DSN Planar Arrays

The structure of the wideband algorithm for detection and direction finding is shown in Fig-

ure 4.3. The first step of the algorithm is to calculate samples of the complex analytic representa-

tions of band pass versions of the sensor signals. These samples are then used to estimate the

35

S2(t) __4110 : Sit)Sjt) PCTA DIRECTION

S3(t) -41 ESTIMATION ETM TO
S'(t) I !

Figure 4.3. Schematic representation of wideband array algorithm. The four inputs si(t)
correspond to an assumed four-sensor array.

zero-delay covariances of the sensors. Then the zero-delay wavenumber spectrum is estimated

from the zero-delay covariance estimates. Any two-dimensional wavenumber estimation algo-

rithm can be used for this purpose. Finally the wavenumber spectrum is processed to detect tar-

gets and determine their directions.

The complex analytic representation (CAR) of a real signal is a complex signal whose real

part is the original signal and whose imaginary part is the Hilbert transform [9] of the original

signal. One method for obtaining the complex analytic representation of a signal is to take its

Fourier transform, set the negative frequency sideband to zero, and then to take the inverse

Fourier transform. For discrete-time signals, the equivalent of the negative frequency sideband is

the interval (-t,O). However, if only a small subset of the samples of the CAR is required this is

not computationally efficient.

A computationally efficient algorithm for estimating M uniformly distributed samples of

the CAR signal from a finite-length record of a sensor signal s (n) was developed. The finite-

length record is divided into M (possibly overlapping) N point regions with one of the M CAR

estimation locations near the center of each region. Each of the CAR samples is then estimated

from the corresponding N point region. This could be done by taking the DFT of the N point

region, setting the negative frequency sideband to zero, and taking the inverse DFT. However,

since we are interested in the value of just one CAR sample per region, the computation involved

can be considerably reduced. In particular, the operation of taking an N point DFT, setting the

negative frequency sideband to zero, and then evaluating the N point inverse DFT at just one

location can be reduced to a single N point linear combination of the samples of s (n). If the N

point region is in 05n <N, then the CAR sample c (n,) of s (n) is given by (assuming N is even):

c (no)= aN s (n) (4.5a)

36

where

N12 if n =n,
a. e -j nt - ')(N-2)12N sin[n(n -no)/2] if n no (4.5b)

sin[nt(n -no)IN)]

The resulting linear combination ic the estimate of the CAR sample of s (n) at n =no.

An additional feature can be added to the above algorithm. In some cases it may be desir-

able to find the complex analytic representation of s (n) filtered through a pre-specified positive

frequency passband. If this passband can be specified as 2rtK I/N <co<2tK2/N where K 1 and K 2

are integers and 0.K <K 2 _N/2, then the only change to the CAR algorithm is that the

coefficients a, are now specified by:

F K 2-K1 if n =n,
a. e -jn,-,)(K(+K2-1 ,.)/N s[t(K2-K 1)(n -no)IN I if n *no (4.6)

sin[nt(n -n,)/N)]

The next step in the wideband array processing method is to estimate the zero-delay covari-

ance of the complex analytic representations of the sensor signals. Let ci (n) denote the mth CAR

sample of sensor i that is obtained using the above algorithms. An estimate of the zero-delay

covariance between sensors i and j can then be obtained by averaging the product ci (n)c* j (n)

over the M values at which the CAR signals have been estimated. Thus

r= 1rnt=cj(n)cj(n) (4.7)

is an estimate of the ij element of the zero-delay covariance matrix R.

Several issues are involved in selecting the total number of samples, the best value for M,

and the block size. A related question is: Why not use all the values of the complex analytic

representation? The principal factors are the bandwidth of the process, the sampling rate, and the

time period over which it is stationary.

First consider stationarity. One aspect of stationarity is whether sounds appear to be com-

ing from approximately fixed directions. Is the direction change during the observation interval

smaller than the directional determining capabilities of the microphone array? If not, the

37

wavenumber distribution for the source will be smeared out. The signal will then be more

difficult to detect and there will be more ambiguity associated with the direction estimate. The

stationary times can be several seconds for distant aircraft sources and only a fraction of a second

for nearby aircraft. For most experiments we have used 1- to 2-s time intervals. This is a

compromise between the long intervals that could be used to detect diF!ant aircraft and the short

intervals needed for close high-speed aircraft. But it is good for a wide range of aircraft speeds

and distances. An adaptive signal processing system might provide some improvement but at the

cost of considerable computational load and complexity. Background noise can also be non-

stationary, but moving aircraft source considerations normally dominate the selection of a mea-

surement interval to estimate R.

Given the measurement interval, the number of complex ana!ytic values to calculate R and

the best block size to use depend upon the sampling rate and bandwidth of the signals. If the

sampling rate is exactly matched to the bandwidth of the signal (the signal fills the entire Nyquist

band) then all CAR samples for one time series are independent of each other, including adjacent

samples. In this case, assuming that the method described above is used to calculate one CAR

sample for each block, the best estimate of R would be obtained by overlapping the blocks

almost completely and using very long block sizes. The large block sizes are required to calculate

the CAR for broadband signals. The large overlap is required to minimize the statistical fluctua-

tions in the estimate of R. In this case, M becomes the total number of data samples and every

CAR sample is used. But data are often oversampled in time so the signal bandwidth fills only a

fraction of the Nyquist band. In this case a good approximation to the CAR can be obtained with

shorter blocks, and samples close to each other in time are no longer statistically independent.

The first of these facts pushes in the direction of using shorter blocks to reduce the computational

load with no significant performance changes. The second fact pushes toward not using all the

CAR samples to get R. When the samples used to estimate R are highly correlated, the

computational cost of reducing statistical fluctuations can be very high. It is often true that an

uncorrelated subset of the values can be used with only a slight increase in statistical fluctuations

and large computational savings. The real-time test bed has generally used abutting blocks or

blocks with 50% overlap.

38

The next step in the signal detection and direction finding process shown in Figure 4.3 is to

estimate the zero-delay wavenumber spectrum P_. (k) from the zero-delay covariance matrix R.

There are many methods in the literature [101 for such multidimensional spectral estimation prob-

lems. For example, the conventional Bartlett method [11] gives the estimate

PzD (k) = (I/N 2) ERRE (4.8)

where E is the column vector

E =col [e-jk -x,..,eJk X], (4.9)

N is the number of sensors, xi is the location of sensor i, and EH is the complex conjugate trans-

pose of E. Another spectral estimation technique, known as the Maximum Likelihood Method

(MLM) [11], belongs to the class of so-called high-resolution techniques. The MLM estimate of

PZD (k) is given by

PZo(k)=IIEHR-IE (4.10)

where E is the same as in (4.5). Both the Bartlett method and MLM method were considered for

use in the test bed. The MLM method was selected because it provides more resolution, at least

under conditions of high signal-to-noise ratios.

The amount of computation involved in the sensor array processing method outlined above

is approximately the same as that required for estimating the frequency-wavenumber spectrum at

just one frequency. To see this refer to Figure 4.4 showing the major computational steps for both

the wideband algorithm and the frequency wavenumber method. Where the wideband method

must calculate a single N-dimensional scalar product to obtain a bandpassed complex analytic

signal sample, the frequency-wavenumber method must perform a full N-point Fast Fourier

Transform. Where the wideband method calculates a single covariance matrix, the frequency-

wavenumber method must calculate a power spectral density matrix for each frequency. The

number of calculations per frequency for the power spectral matrix calculation is the same as the

total number of calculations for the covariance matrix estimate. Finally, in normal frequency-

wavenumber analysis, a wavenumber spectrum is estimated for each frequency while the wide-

band method requires only one wavenumber analysis. This is the essence of the computational

advantage of the wideband method; it detects the energy from all frequencies while requiring

39

K 1 CHECANNEL NRA NU KR CHANNEL~

MATRIXq

COINU RL AO L N POWBERS SC RALNEL

NE IDBADZETOD LAOLDR NAECROAND MEHO

Fiur 44.COmpEAION ofMATRnIndfeqe C aEnubmtos

MATRIX40

only a single wavenumber analysis. It follows that the computational requirements for estimating

the zero-delay wavenumber spectrum is a fraction of the computation required for estimating the

frequency-wavenumber spectrum.

The last step in the process shown in Figure 4.3 is to detect the signal and estimate its direc-

tion. This is simply done. For the expected range of aircraft elevation angles and frequency

bands there is a minimum and maximum value of I k I in wavenumber space. The minimum

value is zero, corresponding to aircraft that are overhead or that produce signals with significant

power only at very low frequencies. The maximum value is 21ff"max/C, where Fmax is the highest

frequency in the arriving signal and c is the speed of sound in air. This corresponds to the

wavenumber for the highest frequency component of the signal when it is arriving horizontally so

that its phase velocity across the array is equal to the speed of sound. The detection algorithm

performs a numeric integration along radial arms in wavenumber space as a function of azimuth.

The sum approximating the integral goes from zero out to the expected maximum value of I k I.

This converts the wavenumber spectrum into a detection function that represents power as a func-

don of direction of arrival. The final step is to select the largest peaks in that function and report

their azimuths as possible target directions. The size of the peaks is used to assign a strength to

the signals. The maximum number of reported peaks is a parameter. The average value of the

lowest quartile of the values of the detection function is also reported to provide the tracking

algorithms with information that can be used to estimate the accuracy of the direction itimates.

4.4. Experimental Results

The wideband algorithm has become the standard acoustic signal processing algorithm for

the test bed. All acoustic tracking results cited in this report, with the exception of results based

upon simulated data, were obtained using acoustic measurements produced by the wideband

algorithm. We include here two examples that illustrate the signal processor output in more

detail than it is illustrated elsewhere in this report.

One example illustrates the output of the signal processor when there are two aircraft

present. The other is a comparison of the performance of the wideband algorithm with the MLM

narrowband algorithm that was used earlier in the project. The input data for the algorithm was

41

NORTH

MICROPH~ONES

2 in

2

acoustic data from a 9-microphone array, sampled at a 2048-Hz rate. The array configuration is

illustrated in Figure 4.5 and is the same as that used throughout most of the DSN work. The

dimensions are large enough to provide directional accuracy of a few degrees or less.

The details of the processing steps to obtain the experimental results shown in Figures 4.6

and 4.7 are as follows. The first step was to calculate 32 uniformly spaced samples of the com-

plex analytic representations of each of the sensor signals. The observation interval covered by

the 32 samples was 1 s for the multiple target experiment and 2 s for the other experiment. To

obtain the 32 samples, each signal was divided into 32 nonoverlapping regions of 64 or 128 sam-

ples each, depending upon the observation interval. For each block, the middle sample of the

complex analytic representation was computed. Next, the zero-delay covariances were computed

and averaged over all 32 samples. MLM estimation was then used to obtain the zero-delay

wavenumber spectrum from the zero-delay covariance estimates. The wavenumber spectrum was

computed at 60 equally spaced points along each of 120 radial wavenumber directions selected

uniformly over the entire 3600 range of bearings. The maximum wavenumber radius for these

computations was selected to correspond to a 128-Hz single-frequency acoustic planewave with a

direction vector parallel to the array plane. Source bearings were then determined by summing

the integrated power along the corresponding wavenumber radius for each direction and picking

peaks in the resulting power versus bearing functions.

Figure 4.6 shows the integrated power as a function of bearing for three different 2 s inter-

vals during a time period when there were two aircraft passing the array. One aircraft maintained

a constant bearing to the east of the array, while the second moved from the southeast to the

northeast. The figure shows the output 5 s before the aircraft azimuths cross, at the time they are

crossing and 5 s after they have crossed. Strictly speaking, this description applies to acoustic

azimuths. The acoustic azimuths lag the true aircraft azimuths because of acoustic propagation

delays. The distinction is not important here, but it is important for tracking and is fully covered

in Section 6.

Figure 4.7 shows the comparison of the wideband algorithm and our previous algorithms

during an 80-s period when a helicopter was flying past an acoustic array. Only the azimuth of

the largest detection peak is shown as a function of time. The wideband outputs are more con-

sistently near the correct azimuth.

43

T=O

AIRCRAFT 2

AIRCRAFT 1 ARRAY

02

CL
a

aa

0 100 200 300 360

AZIMUTH

-*-AIRCRAFT 1, 2 T =5

ARRAY

ul

0

a-

(b

44

--*-AIRCRAFT 2 T1

duu-AIRCRAFT 1

L'

0:
0

LUI

44

360 1

270

180

90
0

360

270

TRUUE

AZIMUTH

x' 180-

4

900

(b)

20 18008

44

90mmn

5. TV SENSOR ALGORITHMS

5.1. Introduction

Unlike acoustic arrays, TV cameras have a limited Field-Of-View (FOV) and are hence

more useful for improving tracks than for finding new targets. The TV subsystems were therefore

designed to accept cueing information from the tracker and to provide the tracker with azimuth

measurements for selected targets. The approach used to integrate the TVs into the tracking sys-

tem to complement the acoustics applies equally well to other imaging sensors such as passive IR

sensors.

Figure 5.1 shows the relationship between the tracker and the TV subsystem. The TV sub-

system obtains position tracks from the tracking system like any other system user. It then selects

a specific target, controls the camera to point at the target, collects and processes image data, and

provides the resulting azimuth measurements, if any, to the tracker. The TV subsystem has a

closed loop relationship with the tracking system. In general the measurements from the TV sub-

system can substantially improve target tracks because the TV measurements have no inherent

propagation delays and are more accurate than those of the acoustic arrays.

DSN 14

TRACKER

POSITION TAK IAE MEASUREMENT

K - - V SUBSYS T EM

Figure 5.1. TV subsystem elements and tracker interactions.

47

This Section describes the TV subsystem algorithms developed for use in the test bed.

These algorithms provide reliable detections of experimental targets while producing very few

false alarms. The hardware is described elsewhere (Section 3).

5.2. Target Selection and Camera Control

The inputs to the camera pointing algorithm are tracking messages from the DSN tracker.

Each message contains tracks for up to 5 targets, a limit set by the number of tracks that can be

contained within a standard tracking message. The information for each target includes time,

position, velocity, and a target identifier (ID). Based on this information, the algorithm performs

two functions: it selects a single target and generates camera control commands (azimuth, eleva-

tion, and zoom) to bring the target into the FOV of the camera.

The overall target selection objective is to select a target that can be quickly acquired and

for which TV azimuth measurements can be made for a specified minimum time duration. The

selection process is summarized in Figure 5.2. First, for each target, a list of feasible camera-

pointing "policies" (types of camera motions that might bring the target into the field-of-view) is

calculated. Next, four features are calculated for each feasible policy and target combination.

TARGET I
ESTIMA TED
TRAJECTORY

SE
POLICY

C AFEATUREERPI

GENERATOR O TEASIBLE C CEA TURECURRENT IPOLICIES fOR VECTOR FOR

AZIMU TH

TAGE N * SEETDTREN

' I• SELECTED CAMERA POLICY ,
POLICY FEATURE o,0

GENERATOR ' COMPUTER * CAMERA -POINTING COMMAND

Figure 5.2. Complete camera pointing algorithm.

48

The features are: (1) Time-to-Catch (how long will it take the camera to slew to the target), (2)

In-Track-Time (how long can the camera follow the target), (3) Acquisition-Range (camera-to-

target range at acquisition), and (4) Acquisition-Azimuth (target azimuth at acquisition). Finally,

a decision rule is applied to the feature vectors to select a target, a camera policy, and an

azimuth-slew command that will implement the policy. The rule that has been used thus far

selects the policy-target pair that minimizes the Time-to-Catch while achieving an In-Track-Time

greater than a specified value (e.g., 10 s).

The list of feasible policies for each target typically includes only 2 to 5 policies. It is

obtained by pruning a larger list of 34 possible policies that exhaustively account for three dif-

ferent target/camera situations. These situations are: (1) The target may fly over the camera,

thereby moving above the camera field-of-view; (2) The target may fly through a region where

the camera cannot slew fast enough to keep up (an "untrackable region"); and (3) a camera dead-

zone, resulting from the mechanical limits of the camera mount, may prevent the camera from

slewing to a desired azimuth in one direction. Two of these situations are illustrated in Figure 5.3

where the camera is pointing west and the target is traveling south on a track that will bring it to

within d = 1 km from the camera. The camera cannot slew through its dead-zone (which

begins/ends at 1050/1150 in azimuth). In addition it cannot slew fast enough to follow the target

while the target is in the region labeled "untrackable." Clockwise and counterclockwise camera

motions are treated separately in the possible policy list. Simple rules, based upon the camera

initial position and the aircraft track, are used to prune the list of possible policies down to the list

of feasible policies.

Two feasible policies and their associated features are also shown in Figure 5.3. For Policy

1 the camera slews clockwise for 11 s and acquires the target relatively quickly but is able to

maintain track for only 6 s, at which time the target enters the untrackable region. For Policy 2

the camera slews counterclockwise (CCW) for 21 s and acquires the target as the target emerges

from the camera dead-zone. Thereafter it can follow the target forever. If the required minimum

In-Track-Time is less than 6 s, then Policy ! wih be selected because it is the option with the

smaller Time-To-Catch. If the required minimum In-Track-Time is greater than 6 s then Policy 2

will be selected because it is the only one meeting the In-Track-Time requirement.

49

4 ~ A TARGE rA rt o
V MACH 0.6

-d

3-

0

0
CL POLICY 1:

0
z tIN.TRACK = 6 8

71: UNTRACKABLE REGION

DEAD-ZONE

POLICY 2:

tCATC4 = 21

tIN.TRACK =

racq = 1. 1km

~acq 15

Figure 5.3. Examples of camera pointing policies.

50

The feasible policies corresponding to Figure 5.3 depend upon the distance d. For small

distances the untrackable region becomes larger and overlaps the dead-zone, resulting in different

feasible camera policies (e.g., slew CCW and wait at the end of the untrackable region). If the

distance d is almost zero, a "target-over-camera" condition would be declared, resulting in still

other feasible policies (e.g., acquire inbound or outbound).

The computations required by the target selection procedure described above take approxi-

mately 0.8 s per target to execute in the Standard Nodal Computer. An abbreviated version of the

algorithm, requiring only 0.2 s to execute, was also developed to reduce the average processing

load. The abbreviated version forces the TV subsystem to adhere to a target for several tracker

cueing cycles if possible.

The logic for selecting between the complete and abbreviated algorithms is shown in Figure

5.4. The first time a position message arrives (i.e., when the TV node is first enabled), the full tar-

get selection algorithm is executed, resulting in the selection of a target and camera-pointing pol-

icy, and in the issuing of a camera-pointing command. In addition, the identifier of the selected

target and its associated In-Track-Time feature are saved. Thereafter, as new position messages

arrive, the full target selection algorithm is executed only if: (a) the track corresponding to the

SELECT REFRESM

LAST TARGET 10 LAST ov TRACK TIME TIME

ABBREVIATED
- CAMERA-POINTING

YES ALGORITHM

ARGe Is TA YS CR CAMER
A

POING COMMAND
IN NEW
POSITION 44ESSAGE NONO NO

40 CAME RA -POINTING ------ I-

ALO IH e SELECTED TARGET

•* SELECTED CAM4ERA POLICY

* CAMERA POINTING COMMAND

Figure 5.4. Selection of pointing algorithms.

51

ELEVATION COMMAND
INPUTS NCOMPUTE (to Camera)

" _- EXPECTED-
TARGE? YES ELEVATION

A TCOMPUTE ESTIMATE
ELEVATION TIME-TO-

DETECTED? YES CORRECTION ELEVATE

TIME-TO- ELEVATE
COMPUTE (to Azimuth Control)

- SEARCH
ELEVATION

INPUTS OUTPUTS

* TARGET ID FROM • ELEVATION COMMAND
* TARGET ESTIMATED STATE DSN TRACKER * TIME-TO.ELEVATE -

FROM
TARGET FOUND/NOT FOUND TARGET DETECTION

* TARGET ESTIMATED ALTITUDE ALGORITHM

Figure 5.5. Elevation control algorithm.

52

previously selected target has been dropped by the cueing DSN node; (b) the In-Track-Time

period of the previously selected target has expired; or (c) the previous target selection is declared

to be obsolete on the basis of the "select refresh time" parameter (typically 20 to 60 s). The select

refresh time parameter forces the system to occasionally reconsider its selections if other criteria

do not require it to do so. In all other situations the abbreviated selection algorithm is executed.

The abbreviated algorithm selects the previously selected target, bypassing most of the policy

selection functions, and generates camera-pointing commands using the most recent target state

estimate provided by the tracker.

Initial live testing of the target selection algorithm showed that it occasionally elected to

search for acoustically noisy construction equipment that had been located by the acoustic track-

ing system but was masked from the camera position. Two modifications were made to avoid

searching for such nuisance targets. First, if a target is not detected after a search in elevation

(described in Section 5.2.2), the track identifier is entered on a false-track list. All future cues

with this track identifier are disregarded. Second, exclusion regions are defined specifying areas

known to contain ground construction equipment. Targets with estimated positions within the

exclusion regions are bypassed. These modifications are admittedly ad hoc solutions to specific

problems, but they have been very effective.

Analysis, and initial experiments using the TV subsystem also revealed that targets were

often lost or not acquired because the camera zoom and elevation were constant throughout an

experiment. Camera elevation and zoom control algorithms were then developed that

significantly increased the target acquisition probability and the number of measurements

obtained after acquisition.

The functional elements of the elevation control algorithm are illustrated in Figure 5.5. The

algorithm first checks to determine if a target is new (i.e., has not been acquired before). If it is

new, the camera elevation angle is selected using a default value for target altitude. If the target

is not new, two options exist. If it is not new and has been detected in at least one of the last three

attempts, a 20 camera elevation change is made, if necessary, based on the latest altitude estimate

provided by the target detection algorithm (described below). The objective is to keep the target

near the center of the vertical field-of-view. If the target was not detected in any of the last three

53

attempts, an elevation search is initiated. The lower limit on the elevation search is based on an
"elevation map"--a table of elevation angles as a function of azimuth specifying the elevation of

ground obstacles such as trees and buildings. If no detection is made during the elevation search,

the track identifier is entered into the false-track list.

The probability of detecting a target with a TV camera is a function of camera zoom, a

parameter that determines the field-of-view (FOV). The detection probability is equal to the pro-

bability that the target is in the FOV multiplied by probability of detection given that the target is

in the FOV. The overall detection probability is plotted in Figure 5.6 as a function of FOV for a

fixed target range and as a function of target range for a fixed FOV. First consider the case of a

fixed target range. For a small FOV (large magnification), the probability is small due to random

errors in the position cue and in the positioning of the camera. For a large FOV (small

magnification), the probability is small because, even if the target is in the FOV, the size of the

target image on the screen is too small to be reliably detected. Similar logic explains the shape of

the probability curve as a function of range for a fixed FOV as shown in Figure 5.6.

0

CL 0.5
Z
0

LU

I.-

0

0 I I I

10 20 30 40

FIELD-OF-VIEW (deg)*
I I I I

0.75 1.5 2.0 3.0
RANGE (km)t

*RANGE FIXED AT = 1.8 km
t FIELD-OF-VIEW FIXED AT = 250

Figure 5.6. Target detection probability of TV subsystem as a function of field-of-view
and range for a 1O-m target and 200-m RMS target position error.

54

The zoom control algorithm adjusts the FOV to maintain a high detection probability

independent of target range and aspect. To achieve this objective, the FOV is maximized while

keeping the size of the target image on the TV monitor between 1 and 1.5 cm. This size provides

a near unity detection probability when the target is in the camera FOV. The calculation of

image size is based upon the assumed minimum physical dimensions of targets. If the estimated

size is in the 1- to 1.5-cm range no action is taken; otherwise a table of options is revised with a

target size and time-to-zoom calculated for each option. Selection of an option depends on

whether enough time is available to complete the zoom change during the camera azimuth and

elevation slew time. If a zoom command is issued the option table is updated to correctly

represent the state of the zoom control options after the command is executed. The use of zoom

to maintain an approximately constant target image size made it possible to develop simple and

effective signal processing algorithms for target detection.

The test-bed target selection and camera control algorithms ignore the uncertainty estimates

provided by the tracking system. Use of the uncertainty estimates should be investigated. For

example the track uncertainty will affect the probability that the target is within the camera FOV.

An estimate of this probability might be an additional feature to consider for target selection.

The value of doing this will depend upon the quality of the track uncertainty estimates.

5.3. Image Processing

Once the camera is pointing at a target, two video frames spaced 1/30 s are taken and stored

in two frame buffers. Image processing consists primarily of forming the difference image of

these two frames to produce a frame that emphasizes the outlines of moving objects within the

field-of-view. The difference frame replaces one of the input frames and is kept for processing by

the target detection algorithm described in Section 5.4. The positive image in the other frame

buffer is also kept and used for two purposes: to aid in the discrimination function of the target

detection algorithm; and to preserve the target image for possible transmission to remotely

located network users.

5.4. Target Detection

The target-detection algorithm in the TV subsystem determines whether a target is present

in the field-of-view and, if present, determines the azimuth and elevation of the target. The

55

-- I SEARCH

DIFFERENCE FRAME

FRAME

DETECTION EXIT

NO

' DISCRIMINATE

POSITIVE

F:RAMEI

FALSE
EXIT

#AGE
YES

NO ,

PREPARE
ESTIMATEAZIMUTH

TARGET ALTITUDE MESSAGE
POSITION LIV
ESTIMATE

(from DSN Tracker)

ALTITUDE AZIMUTH
ESTIMATE MEASUREMENT

(to Elevation (to DSN)

Control Algorithm)

Figure 5.7. TV subsystem target-detection algorithm.

56

azimuth measurement is returned to the DSN tracker and the elevation measurement is used to

control elevation.

The logic followed by the target-detection algorithm is summarized in Figure 5.7. First, the

entire difference frame (obtained from the image processing algorithm) is scanned and the image

intensity is averaged over blocks of 4 x 6 pixels. The averaging operation is performed by sam-

pling 10 out of the 24 pixels in each block (to reduce processing time) in a pattern of two 5-pixel

columns separated by an unsampled column. Block size selection is based on the dimensions of

the projection of the target on the frame which is regulated by the zoom control algorithm to be

approximately 5 pixels high and 16 pixels long (0.25 cm by 1 cm).

Next, the block average with the largest magnitude is compared with a threshold. If the

average exceeds the threshold, indicating the presence of a moving object, the average brightness

of the corresponding block in the positive trame is computed. Excessive average brightness indi-

cates that the detection was caused by a moving bright cloud or by a false bright spot such as

caused by diffraction within the camera lens system.

Finally, if a detection passes the brightness threshold and if the measured elevation is within

the range specified by the elevation map (Section 5.2), the algorithm computes the target azimuth

and altitude. The altitude is returned to the elevation control algorithm where it is associated

with the target ID provided by the DSN tracker and used to predict target elevation for the next

measurement cycle. The azimuth measurement and an estimate of its accuracy are transmitted to

the DSN tracker where they are used to update the target track.

The accuracy assigned to a TV azimuth measurement is a function of the camera zoom set-

ting ITt is et equal to 1/33 of the angular FOV of the camera. This assumes that the target size is

about 1 cm in extent within a 33-cm screen and that the precision with which the target can be

located within the image is equal to about 1 cm. These assumptions are consistent with the fact

that the camera zoom is manipulated to keep the target size in the range from I to 1.5 cm within

the same 33-cm screen. The assigned accuracy can be interpreted as a rough estimate for the

standard deviation of the measurement error.

The test-bed tracker, which interacts with the TV subsystem, does not provide the TV sub-

system with target altitude information and does not accept elevation measurements. Clearly,

this would change if a three-dimensional tracker, including target altitude, was developed and

used.

57

5.5. Experimental Performance

The TV algorithms were tested, refined, and demonstrated during a sequence of experi-

ments with live targets conducted during the summer and fall of 1986. Typical is the pattern

shown in Figure 5.8 obtained during a real-time experiment on 15 September 1986. The figure

shows the estimated trajectory of a UH- 1 helicopter with annotations that give the camera eleva-

tion and field-of-view during the entire period that cues were provided to the TV subsystem. The

track is roughly east-to-west parallel to one of the Hanscom Air Force Base runways.

When the initial cue was received, the camera was pointing east with a 30 elevation angle

and a 70 field-of-view. The pointing algorithm then predicted a target/camera intercept and,

while the camera slewed in azimuth, elevation and zoom settings were changed. Elevation was

changed to 110 reflecting the expected target altitude and position at intercept. Field-of-view was

increased to 170 because the target was close to the camera and very little magnification was

needed to obtain a 1-cm target image. When camera settings were completed, two frames were

stored and processed, a target found, and the azimuth measurement sent to the DSN tracker.

INITAL CAMERA
CONDITIONS

AZIMUTH r 80c

LATELEVATION 3LASTZOOM =7-

2000
-

z0

3 3 30. 1°°°_
_

5 -4u 5k

22 17 I-FIELD-OF-VlEW (dog)
CAMERA LOCATION

-3000 -2000 -1000 1000 0o

EAST POSITION (n)

Figure 5.8. Camera control during live experiment.

58

Elevation and zoom were adjusted for subsequent cues as shown in Figure 5.8. Elevation

decreased as the target moved away from the camera because of the effect of geometry and

changes in the target altitude. Field-of-view was increased (magnification decreased) while the

target was close to the camera and decreased (magnification increased) as the target moved

farther from the camera. Thirteen cues were received and twelve azimuth measurements returned

to the tracker. One detection was missed because the difference-frame threshold criteria was not

satisfied. The last cue was received and the last azimuth measurement returned when the hel-

icopter was at a range of approximately 3 km.

59

6. DISTRIBUTED TRACKING ALGORITHMS

6.1. Introduction

A primary research goal was to develop distributed tracking algorithms that were effective

but simple enough to be demonstrated in the DSN test bed. Two different approaches were inves-

tigated. The preferred one is described in detail in Section 6.2 [12-14]. The algorithms described

there have a firm theoretical basis, easily accommodate different sensor types as well as distrib-

uted sensors, and provide real-time tracking of subsonic targets in spite of acoustic signal delays.

They represent a realistic basis for practical distributed tracking systems. The restriction to sub-

sonic targets comes only from using acoustic sensors and is not a fundamental limitation of the

approach. For perspective, the other approach is discussed briefly in Section 6.3. It was not

developed beyond the level of two-node track initiation when it became clear that it had serious

drawbacks as discussed in Section 6.3. While it was capable of distributed tracking, it substan-

tially complicated the tracking process and limited the cooperation between nodes.

6.2. Bayesian Model-Based Distributed Tracking Algorithm

6.2.1. Overview

Figure 6.1 shows the overall structure of the model-based distributed tracking algorithm

that has been developed for the DSN test bed. The elements shown in the figure are duplicated

throughout the network. Each node operates independently and asynchronously, driven by data

from local sensors connected to the tracker and by data received from other sensors via broadcast

communications. The tracker may be connected to a local acoustic subsystem and possibly a

local TV subsystem. Each tracking node in the test-bed system contains a complete tracking

algorithm although only portions of it may be exercised, depending upon the sensors attached to

the node.

Each node contains a "position track" file. Estimates of aircraft positions and velocities are

stored in this file and the term "position track" is intended to encompass both the position and

velocity estimates. Tracks are represented by target specific quantities independent of how the

tracks were obtained, with the one exception that track names include the identities of the two

nodes that first initiated the track. Altitudes are not estimated. a!l aircraft are assumed to be flying

61

ACOUSTICl
ACOUSTICAZ HTO OTHER---AZIMUTH TRACK I TOROTHERS
TRACKING BROAD- TRACKERS

CASTING ACST

S ACOUSTIC AZIMUTH

ACOUSTIC Yk AZIMUTH TRACK FILET TRACK

MEASUREMENTS

ACOUSTIC AOSI

POSITION POSITION FROM OTHER
TRACKING IITRAT TRACKERS

MEASUREMENTS POSITION POSITO

TRACK TRACK TO OTHER

COMBINING BROAD- TRACKERS
CASTING

POSITION
TRACK
BROADCASTS

FROM OTHER 0

TRACKERS

Figure 6.1. Organization of the distributed tracking algorithm.

62

at low altitudes. Track confidences are maintained in the form of position/velocity error covari-

ances. Similar tracking algorithms could be developed for three spatial dimensions but the

tracking algorithms developed for the test bed are for two spatial dimensions.

Position tracks are updated using either local sensor measurements or by integrating tracks

received from other nodes. If the update uses local sensor measurements then an extended Kal-

man filter is employed. Slightly different filters are used for acoustic and for TV azimuth mea-

surements. In both cases, the filters compensate for the passive (i.e., bearing-only) nature of the

measurements. In the case of acoustic azimuth measurements, the filter also compensates for

acoustic propagation delays. Measurement confidences are used to update track confidences in

both cases. It is the use of Kalman filters, and certain assumptions that are needed for acoustic

track initiation, that make the system "model-based."

Track data are shared between nodes by broadcasting position tracks. Such a broadcast may

occur immediately after a position track is updated using local sensor data or it may be deferred

to broadcast only the cumulative effect of many updates. The position track combining algorithm

in a node receiving such a broadcast merges the received information with that in its own track

file. It is through this mechanism that the local track in a node incorporates sensor and track

information from other nodes. Confidences are merged along with estimates. This algorithm is

the essential glue that holds the network together and causes it to function as a single distributed

tracking system.

The test-bed system is a distributed system for track initiation as well as for track mainte-

nance. It uses acoustic measurements for track initiation, with measurements from two geograph-

ically separated sensor arrays needed to start a track. Moreover, because of target motion and

acoustic delays, at least two measurements are required from each site. The measurements could

be azimuth measurements or could be estimates of azimuth and azimuth rate. The second option

was selected for the test-bed system.

The test-bed track initiation algorithm requires azimuth and azimuth rate estimates from

two nodes. These are obtained by forming azimuth tracks, each of which is an evolving estimate

of the directional time history of a passing sound source. Both the apparent acoustic direction

and the rate of change of that direction are estimated as part of the tracking process. Confidence

estimates for these quantities are maintained in the form of covariances.

63

The upper portion of Figure 6.1 shows that position track initiation is performed usinz only

acoustic sensors. TV data could also be used, but would be of limited value. Microphone arrays

can scan a full 3600 in a short time while TV cameras have narrow instantaneous fields-of-view.

A TV camera would require a much longer time to complete a full scan. Although TV could be

used for surveillance it is better suited to help track known targets and was restricted to that role.

The details of the tracking algorithm are presented and discussed in the following subsec-

tions. The position track representation is described in Section 6.2.2. Section 6.2.3 describes

how position tracks are updated using local TV azimuth measurements, while Section 6.2.4

describes how position tracks are updated using local acoustic azimuth measurements, with

emphasis upon the effects of propagation delay. Section 6.2.5 describes the combining of local

and foreign position tracks with particular attention to the problems of combining position tracks

based on shared information. With Section 6.2.5 to provide motivation, Section 6.2.6 describes

alternate policies for position track broadcasting and the consequences thereof. Section 6.2.7

describes the creation and maintenance of acoustic azimuth tracks, while Section 6.2.8 describes

the combination of local and foreign azimuth tracks to initiate position tracks. With Section 6.2.8

to provide motivation, Section 6.2.9 describes alternate policies for azimuth track broadcasting

and the consequences thereof. Section 6.2.10 describes the features of the test-bed tracking algo-

rithm which cope with multiple aircraft. Section 6.2.11 cites some ways in which the tracking

algorithm might be improved to better handle multiple targets. The tracking of multiple and

maneuvering targets, especially with acoustic sensors, is a topic requiring further research to

develop more optimal algorithms and to quantitatively evaluate performance.

6.2.2. Basic Notation a, the Target Dynamic Model

Tracks in the position track file specify "current" ground positions and velocities. A
"current" estimate is the most up-to-date estimate that is possible in a real-time system. It is the

estimate of greatest interest to a system user. For sensors with no significant inherent delays,

such as TV sensors, it is obvious that there are no fundamental difficulties involved in providing

users with current estimates. But an acoustic azimuth measurement is affected by propagation

delay. During the propagation time the aircraft bearing can change significantly. In the worst

case, the change approaches 600. In the early stages of the DSN project it was unclear if it was

64

practical or desirable to perform all tracking in terms of current positions. (Section 6.3 covers the

issues in more detail.) However, subsequent research has shown that it is both possible and desir-

able to do so.

Current position tracking has resulted in an extensible distributed tracking system architec-

ture that easily accommodates different sensor types. It required that statistical dynamic models

of aircraft motion and measurements be employed to use the information from acoustic sensors.

Statistical models made it possible to exploit well-developed methods such as Bayesian estima-

tion and Kalman filters. The resulting algorithm estimates aircraft positions and velocities using

all available information, regardless of whether it is provided directly from a local sensor or

indirectly via a position track broadcast by a foreign node.

The simplest possible target motion model has been used. It assumes that the target travels

at a constant speed with a constant heading. Using this model a current position and velocity are

easily extrapolated to any other time. Let the north and east components of position at time t be

denoted by PN (t) and PE (t), respectively. Let the corresponding velocities be vN (t) and vE (t)

and group the positions and velocities into a 4-dimensional state vector Xp ():

PN (t)

PE (t) (6.1)Xt)=v ,'(t)

VE(t)

For constant speed and heading, the state at time T, Xp (T). is obtained from the state at time t by:

Xp (t) = Ap (T-t) Xp (t) (6.2)

where

01 0d

Ap(d) 0 0 1 0 (6.3)
0001

Multiplication by this matrix represents simple extrapolation.

65

Let ,p (I t) be an estimate of the target state at time "r based upon all information that is

available up to time t. This estimated state can be extrapolated in the same way as the true state

vector can be extrapolated. However, the estimated state vector also has an associated covariance

matrix. Let

E[(Xp()-)e(,lIt))(XpC)-)Xp(rIt))T] =yp(tt) (6.4)

be that covariance matrix, where E denotes statistical expectation. The equation to

extrapolate the covariance matrix is

1p(TIt)=Ap(T-t)1p(t It)Ap(T-t)r + .p(T-t) (6.5)

where

-p (d) = ap Bp (d) Bp (d)T, (6.6)

d 2 0
To
0 2

--2 (6.7)
Bp (d) = d 0

0 d

and rip is a constant. The first term is the extrapolation of the target state for the case when the

target exactly follows as constant velocity and heading track. The second term accounts for pos-

sible random accelerations of the target during the extrapolation time. The nominal acceleration

variance aop is a constant that controls the degradation of confidence over time when there are no

additional measurements.

The state estimate and state covariance pair Yp (r I t) and Ep (r I t) can also be regarded as

defining a Gaussian probability density function for the true state Xp (r). With this viewpoint the

nominal acceleration variance rip can be regarded as the variance of a random acceleration

applied in a random direction.

66

This model and the estimation procedures can be extended to handle three-dimensional

motion but this is an area requiring further research. Topics needing attention include an analysis

of the sensitivity of the two-dimensional tracker to the aircraft altitude, an analysis of the poten-

tial value of acoustic elevation angle measurements, and the development of a three-dimensional

tracker.

6.2.3. Position Track Updating with TV Azimuth Measurements

Although a TV azimuth measurement provides no information about the range to an aircraft

it is still possible to update a position track with such an angle measurement. A simplified

geometric interpretation of the procedure shows how this works. The actual updating algorithm

is more subtle than indicated in the following description, but analogous in how it works and

makes use of the measurement and measurement confidences.

Figure 6.2 illustrates position updating with TV azimuth measurements. Suppose that an

aircraft is flying along a straight path from left to right across the figure. The position estimate

for a past time t is shown on the left side of the figure, along with a circle representing the

confidence region for the estimate. The location of the TV sensor is indicated by a plus symbol.

The measurement for a later time r is represented by the dashed line radiating from the sensor.

The confidence region for the measurement is the pie-shaped region around the measurement.

The first step in updating a position track is to extrapolate the position track to the measure-

ment time. The extrapolated position is the red dot at the right side of the figure. The size of the

confidence circle has increased to represent a decrease in certainty about the aircraft's location

due to the extrapolation from t to r. The decrease in certainty is because the velocity at time t, as

well as the position, is known only approximately. At time t the target position becomes con-

strained by two confidence regions: one derived from the extrapolation from time t and the other

from the TV measurement confidence. A new net confidence region, approximately equal to the

intersection of the two contributing confidence regions, is indicated by green shading in the

figure. The new position estimate (the green dot) is slightly displaced from the previously extrap-

olated estimate (the red dot) because of the effect of the TV measurement, which is behind the

extrapolated position. The confidence area after updating to time 'C is less than it was at time t.

Updating has improved the overall accuracy of the position track. However, although the area is

less, the error along the line-of-sight of the TV sensor at time 'T is larger than it was at time t.

67/ ' , ,

REVISED ESTIMATE
AT TIME

ESTIMATE
AT TIME t ' EXTRAPOLATED

7/ ESTIMATE AT TIME

,' TV MEASUREMENT
' AT TIME 7

N TV SENSOR

Figure 6.2. Updating a target track using a TV' measurement: conceptual steps.
See text.16r discussion.

69

The precise mathemptical details of the updating algorithm closely parallel the above

description. The inputs to the algorithm consist of a position track at time t, represented by a

state estimate and state covariance pair Xp (Q I t) and ., (t I t), a TV sensor location represented

by north and east position coordinates sN and sE, and a TV azimuth measurement at time T,

represented by a measurement and measurement variance pair :rnp (t) and 0r1p(T). The mea-

surement variance represents confidence in the measurement just as the state covariance does in

the state estimate. They can be regarded as defining a Gaussian probability density function for

the true aircraft azimuth at time T, just as the state estimate and covariance can be regarded as

similarly defining a Gaussian probability density function for the true aircraft position and velo-

city at time t.

The first step in updating is to extrapolate the position track to the measurement time r,

yielding ,jp(Crt) and 4(r t). The updated state estimate and covariance are then computed

using the extended Kalman filter algorithm [15]:

p(l) = Xp (T I t) + Knp (t) Izrp (T)- f.lip(lt) (6.8)

and

EP (t 1't) [I - Krvp (T) Crvp (t)] ,I ('tIt) (6.9)

where

.t(T It)= arctan[AN (T t -SN . E (T It) -SE] (6.10)

K-,, (T) =p (C It)C C()t (C) y (C I t) Crp (TC)T + n (')] -1 (6.11)

AE(t1)-
SE T

AN(t)- SN (6.12)
(1T)2

Crvp (t)
0

71

and

f('T) = A [(T -t) sN + [E(t 10 - sE) 12 (6.13)

The state estimate is corrected by appropriately weighting the difference between the TV azimuth

measurement and the extrapolated aircraft azimuth relative to the TV sensor. That weight is the

Kalman filter gain K7vp (T). The state covariance is then reduced appropriately given the correc-

tion and the Gaussian probability density function interpretation of the position track and the

measurement. The Kalman filter gain is calculated using the partial derivatives of the extrapo-

lated aircraft azimuth with respect to the extrapolated positions and velocities, CTVp (C).

There are some minor but important problems that must be addressed when the extrapolated

aircraft range from the TV sensor, f(t), is small. The problems are typical ones for extended Kal-

man filters and are solved pragmatically. When the range is small some partial derivatives may

become excessively large, resulting in large Kalman gains and tracking instabilities. The solution

for this problem is to artificially increase the measurement variance when the extrapolated range

is small. Another problem is that when aircraft-to-sensor range is small the extrapolated position

may be on the opposite side of the sensor from the actual aircraft position, resulting in a large

difference between the azimuth measurement and the predicted azimuth. This can result in a large

position correction although the error is actually small. The solution is to skip the update when

the difference between the predicted and measured azimuths is unreasonably large.

Figure 6.3 shows the results of an early experiment [16] with the test bed that demonstrated

tracking with a single TV camera. The experiment involved real-time tracking of a helicopter.

The track was manually initiated with a circular error ellipse at the instant the helicopter reached

the center of the TV field-of-view. A line connects the points in the resulting position track in the

figure and an error ellipse is shown centered at each track point. The ellipses are the two-

dimensional equivalent of a one-standard-deviation error bar. As expected, updating with the TV

measurements produced eccentric ellipses with their major axes aligned with the TV sensor's

line-of-sight. The major axes expand slowly even as subsequent updates are made. When no more

measurements are available, the ellipses expand along both axes.

72

30

IN TRACK IN TRACK WITH

20 COASTING NEW TV
MEASUREMENTS '2

0 10

TRACK TV

INITIATION NODE

NI

I I[I 1 I I I I I

-5000 -4000 -3000 -2000 -1000 0

EAST (m)

Figure 6.3. Real-time helicopter tracking with a single TV subsystem.

The extended Kalman filter algorithm works well as long as the true state estimation errors

are statistically consistent with those expected on the basis of the error covariance matrix. But if

there are too many large state estimation errors, the position track can diverge from the correct

value. The tracker becomes overconfident in its own estimate. One way to avoid this is to make

the acceleration variance atp large, thereby keeping the covariance matrix large. Although this

does stabilize the tracker it has the negative effect that large estimation errors can result. Figures

6.2. and 6.3 illustrate one reason: the updating procedure does not reduce the extrapolated posi-

tion estimation error along the TV line-of-sight. So the best choice for the acceleration variance

parameter is a compromise between avoiding divergence and accurate tracking for acceleration-

free aircraft. Section 6.2.11 briefly discusses a more general way to avoid divergence and treat

maneuvering targets.

73

6.2.4. Position Track Updating with Acoustic Azimuth Measurements

Position track updating also can be done using acoustic azimuth measurements. The algo-

rithm is more complicated than for TV azimuth measurements because of acoustic delays. Figure

6.4 illustrates the basic ideas as did Figure 6.2 for the case of TV measurements.

The first step in updating a position track is to extrapolate the position track to the measure-

ment time t. The rightmost red dot and circle in Figure 6.4 represent this extrapolation. Unlike

the previous example with a TV sensor, there is no intersection between the extrapolated

confidence region and the measurement confidence region. This is due to acoustic propagation

delay.

The second step is to estimate the propagation delay by moving the target backward to the

point where sound from the aircraft will arrive at the sensor at time t. This is illustrated by the

dashed line in the figure leading back toward the left red dot. The tick marks represent aircraft

positions for equally spaced times in the past. The same time increments are indicated by the

small arcs shown on the acoustic measurement. The arcs correspond to increasing propagation

delays as well as distances away from the sensor. The correct projected position, represented by

the left red dot, is that for which the propagation time from the aircraft to the sensor equals the

time the aircraft takes to move to the extrapolated position at time T.

The third step is to shift the state estimate uncertainty region back in time by the estimated

propagation delay 8. The result is the left red circle in Figure 6.4. Two constraint regions now

restrict the aircraft location at time T - 8. A revised position estimate and the combined con-

straint region at time t - 8 can now be calculated. The final step is to shift that joint constraint

and the position estimate forward in time to T. The estimates and constraint regions at time T-S

and at the T are shown in green on the figure.

As was the case with the TV sensor, the area in which the aircraft is presumed to lie after

updating at time ¢ is usually less than the area in which it was presumed to lie at time t. That area

is elongated with the error in one direction larger than it was before the update. But the

confidence region will not be oriented along the line from the target location to the acoustic sen-

sor because of the shift forward in time.

The mathematical details of the updating algorithm are as follows. Inputs consist of a posi-

tion track at time t, represented by a state estimate and state covariance pair X, (t It) and

74

P O S I T I O N K (, -R J (V
'T

IC
I A I A

AT TIME I H C)M I i,

ACOUSTIC
I MEASUREMENT

AT TIMEr

ACOUSTIC SENSOR

ID.

Figure 6.4. U pdating a track wit/ an acOLJtit measuremlent: conceptual ste).s.

See, text for discussion.

7511 7~

Ep (t It), an acoustic sensor location represented by north and east position coordinates, SN and

SE, and with an acoustic azimuth measurement at time 'T, represented by a measurement and

measurement variance pair zAt, (t) and GAP (T). The measurement variance represents confidence

in the measurement just as the state covariance does in the state estimate.

The first step is to extrapolate the position track to the measurement time, yielding Xp (t I t)

and Ip (t It). The second is to estimate the propagation delay implicit in the acoustic azimuth

measurement at time t. The model of constant speed, constant heading motion results in the fol-

lowing equation for the propagation delay:

C = N(SN] 2+ I(I t) - V,(T It S, 1/2 (6.14)

where c is the speed of sound. This equation has one positive, real solution for 6 provided the

estimated velocity is subsonic.

The third and fourth steps are merged in the application of the extended Kalman filter algo-

rithm [15] as follows:

Xp (r I T)= Xp (It) + Kp (T) I zAP (C)- ZAp (1 I t (6.15)

and

Y-P(xt I)= I -AAp () CAP (T)l 1 Y-(T It) (6.16)

where

AP(Tlt)=arctani ,v('lt)- ,(tI)8-SN ,1;E('T0 -1^('Tlt)6-SE 1 (6.17)

Kap (TC) = Y-p (T I t) CAP (C) T CAP (¢) Y-p (TC 1t) CAP ('T) T + OAP (TC3 I (6.18)

77

E (IIt)-- SE

PN (Et) - SN
0 f (Cr)c 8

CAP CO A(T1)-SE , (6.19)

(= (IC I11) - SN
f() c

1AN=(T 1 [~ I (T 1) - E(T It) (T~ 111 2 (6.20)

and

As one would expect, these formulae reduce to those for TV azimuth measurements in the

limit as c goes to infinity. The similarities between the two updating procedures extend to the

pragmatic modifications that must be made to avoid unrealistic corrections to the state estimate

when the aircraft-to-sensor range is small or when there is a large difference between the TV

azimuth measurement and the extrapolated aircraft azimuth relative to the TV sensor. An addi-

tional problem can occur if the estimated speed becomes close to the speed of sound. The prag-

matic solution has been to clip the speed estimates to keep them less than the speed of sound, typ-

ically less than Mach 0.95.

Updating with acoustic measurements makes mere extensive use of the aircraft motion

model than updating with TV measurements, so it should not be surprising that it can be more

sensitive to aircraft maneuvers. As with TV measurements it is beneficial to choose rip as large

as possible to avoid this problem. But the more general solution discussed in Section 6.2.11 may

be a better approach, although it has not been tested.

78

Figure 6.5 show the results from an early real-time test-bed experiment designed to demon-

strate tracking with a single acoustic node using the algorithms described above. A line connects

all the estimated positions. Around each is an ellipse expressing the two-dimensional equivalent

of a one-standard-deviation error bar. As with the confidence region in Figure 6.4, the initial error

ellipse is circular. Updating produces eccentric ellipses with their long aAc, ,iisaligned with the

acoustic sensor line-of-sight, in keeping with Figure 6.4. The long axis slowly increases even as

updates are made. When no more measurements are available, the ellipse grows along both axes.

2 ,

ERROR
S./ ELLIPSES

1COUTIC

ATRACK0
2 SINGLE //INITIATION

NODE
0 AACOUSTIC

TRACK

ACOUSTIC
TRACKING

NODE

* -1 I I I

-2 -1 0 1 2

* EAST (km)

Figure 6.5. Real-time helicopter tracking with a single acoustic array.

79

6.2.5. Combining Local and Foreign Position Tracks

The preceding two sections describe how sensor measurements made by a node are directly

incorporated into a track maintained by the node. The incorporation of information from sensors

attached to other ("foreign") nodes is more complex. That information is first incorporated into a

position track by the foreign node, then transmitted to the local node as a position track and is

finally incorporated into the local position track by merging the local and foreign position tracks.

The exchange of position track information between nodes is through broadcasts, with several

nodes in general receiving each broadcast. Each node operates independently, considering itself a

"local" node and all others as "foreign" nodes.

The merging of local and foreign tracks should optimally combine the information in each

of the tracks. If the local and foreign position tracks are based on disjoint sets of sensor data this

can be easily done by extrapolating the two position tracks to a common time and forming a

weighted average as follows. Let the local position track be denoted by the state estimate and

covariance pair LTP (tLTp I tLTP) and TLTp (tLTp ItLTP), the foreign position track by the pair

,.Tp,(tF4p I tF.p) and IFrT (tF-p It-Tp), and the common time by T. Typically, tLTp is the last

time the local position track was updated using a TV or acoustic azimuth measurement, tFtp is

the last time the foreign position track was updated, and T is the next local measurement time.

The time T is used since the times of local measurements are used in each node to trigger all track

update and combining activity. After the extrapolations have been done, the weighted averaging

takes the form:

XLTP (T IT) = LTP (tIT)X

T-LTP(T ItLTP)-' YLTP(T ItLTP) + (FTP(T -I FTp(FTP (TItFT)] (6.22)

and

TELTP(It)= [IT T(LTP(I TP)-I + -FTP(TI tFTP (6.23)

This is an optimum Bayesian combination of the probability density functions of the track esti-

mates under the assumption that the extrapolated state estimates and covariances define indepen-

dent Gaussian probability density functions for the true state of the aircraft.

80

But because of information exchange between nodes, the local and foreign tracks are not

independent. Each is based upon its own local sensor data plus foreign data collected up to the

time of the previous foreign node broadcast. Each local track contains some unique information

and some that is common with other tracks. The unique information is provided by the locally

attached sensors since the time of the last broadcast. The common information is any informa-

tion acquired before that broadcast. If Equations (6.22) and (6.23) were used to merge local and

foreign tracks, the common information would be counted twice.

One way to handle the common information problem is to keep a "common" track as well

as a local track. The local track is the best track estimate available at each node, The "common"

track can be used to keep a record of the information that is common between nodes. Let

,cp (cp I tcp) and ,-p (tcp I tcp) denote the state and covariance for the common position track

at the time of the last intemodal broadcast. The correct position track combination procedure

becomes:

XLTP (C I T) = £LTP (-C 1,)X (6.24)

[ITLTP (I I LTP)-' XLTP Cr I tLTP) + X.TP (T I tFTP -)FT (~pr I tFTP) -c (T C I tCP)-I (cTC I C

and

TLTP (I)= { LTP (T I tLTP)-' + -FTP (C I tFTP)-I -CP (Itcp)I (6.25)

The state and covariance of the common position track are updated to time t from time top using

the usual model equations given in Section 6.2.2.

Equations (6.24) and (6.25) implement an optimum Bayesian combination of Gaussian pro-

bability density functions if the information in common tracks and the added information in local

tracks are independent. For some technical reasons related to target maneuvers [17], the indepen-

dence assumption is not quite correct; but, fortunately, this does not result in any practical prob-

lems if the true state estimation errors are consistent with the error covariances, which seems to

have been the case in most DSN test-bed experiments.

As described above, the time tcp is the time of the last position track broadcast by either the

local or foreign node, and Xcp (top I tcp) and Ec, (tcp I tcp) are the estimate and covariance pair

81

that were broadcast. In practice, each node may have different common position tracks. For

example, a node may broadcast a position track and assume that the information in that position

track is now common. But a foreign node may fail to receive the broadcast, and therefore cannot

update its common track. Because of this each node must maintain its own version of common

track. The common track for a node is set equal to the local track each time it broadcasts the

corresponding local track.

The multiplicity of local and foreign tracks requires some additional nomenclature to avoid

confusion. Hereafter what were simply called local and foreign position tracks will be called

local and foreign total tracks to distinguish them from local and foreign common tracks. The

notation of Equations (6.24) and (6.25) presaged this nomenclature. Similar notation will also be

used to distinguish between local and foreign common position tracks.

With distinct local and foreign common tracks it is not obvious which one to use for track

merging. Both options have been investigated, with the conclusion that the foreign common

track is the correct choice. However, during early stages of algorithm development the local

common track was used as the common track in Equations (6.24) and (6.25) since it is always

locally available. This option was initially thought to be most desirable because it would require

less intemodal communication than the other option.

Unfortunately, the use of the local common track for track merging can lead to problems. A

simple example of such problems is illustrated symbolically in Figure 6.6. Suppose each node

starts with identical information 10 in its total and common tracks. Both make measurements,

gaining additional information ML and MF. The local node then broadcasts and changes its com-

mon position track. But the foreign node does not receive the broadcast and therefore makes no

changes in either the total or common track. Measurements are again made, but for simplicity and

illustrative purposes it is assumed that they add no information and serve only to trigger a second

broadcast, this time by the foreign node. The local node changes both total and common tracks

upon reception of the broadcast from the foreign node. At this time both nodes again have identi-

cal information in their total and common tracks. But the information from the local measure-

ment ML has been lost from the system permanently.

82

ML 0

LOCALR
NODE S S

TL 10 I0 + ML 10 + ML I0 + ML 10 + MF

CL 10 to110L1 +ML1 M

® ®M
FOREIGN MF B

NODE S 8 R

TF 10 I0 + MF I0 + MF I0 + MF I0 + MF

CF I0 I0 0 I0 MF

Figure 6.6. Information diagram illustrating serious information loss when only total tracks
are broadcast. See text for discussion.

Use of the foreign common position track avoids the problem illustrated in Figure 6.6 as

well as other system stability and track quality problems. It does require that each node broadcast

a common track along with every total track. For convenience, we will continue to refer to posi-

tion track broadcasts with the understanding that such broadcasts include total and common posi-

tion track pairs. In addition, all unqualified references to position tracks outside this section will

refer to "total" position tracks, not "common" position tracks.

The resulting track updating formulas for the total and common tracks are given by Equa-

tions (6.26) through (6.29). The formulas to update the local total position track become:

XLTP (T I T) = YLTP (T It)X (6.26)

1 YLTP C I tLTP)-I XLTP (T tLTP) + nFTP(TI tFTp kFT (p (ItFTp)-FCP (T I t Cp) FCp (T I tFCp

and

FLTP(CrIT)= (1LTP(Cr1tLTP)-I + pFTP('ItFTP)-I - FCP(CTI FCP)- (6.27)

These formulas add the information in the local total track to the information which is in the

foreign total track hut not in the foreign common track, i.e., the information acquired by the

foreign sensor or sensors since the previously received broadcast. The local common track must

similarly incorporate that new information as follows:

83

XLp (T I) -- tLp (T I T)X (6.28)

1 ILCP (T I tyjP)-' XLCP (T I LCP) + 1sn-P (T I 4-P)-' kFTIP (T I tFP~p - FCP (T I tFCP)e FCP (T I tFCP

and

ILCP (T = I:LCP (r I tLCP)-' + FTp (1 trp) - _ T-FCP (T I tFCP)I -I (6.29)

Only if the local and foreign common tracks are equal does this reduce to replacing the local

common track with the foreign total track.

Figure 6.7 uses the same format as Figure 6.6 to illustrate one advantage of broadcasting

both total and common tracks. As before, the foreign node does not receive the information ML.

But the system as a whole does not lose the information because the local node still retains it

wnen the interactions and processing are completed.

Thus far we have assumed that both nodes begin with position tracks and that they are

identical. But it is possible, as discussed more fully in the following section, for the local node to

have no initial position track. In that case, the only track information available to the local node

is a position track received from the foreign node. Local total and common position tracks are

~ML0
LOCAL
NODE S B R

TL I 0 ML I0 ML I0 + ML MLMF

CL 10 10 0 ML IOML Mo.M+MF

SMF0

FOREIGN
NODE S B R S B

TF 10 IO+ MF IOMF IOMF IOMF '

CF 10 I0 10 I0 10 + MF

Figure 6.7. Information diagram illustrating minor information loss situation. Situation is the same

as for Figure 6.6 except that total and common tracks are broadcast. See text for discussion.

84

created upon receipt of the foreign position track. The tracks are initialized with the state and

covariance from the received foreign track. Figure 6.8 illustrates this aspect of position track

combination.

Figures 6.6 through 6.8 are symbolic information flow graphs. They were generated using a

symbolic information flow simulator that was developed to investigate what information should

be communicated, when it should be communicated, and how it should be processed to achieve a

robust position combining algorithm. Section 10.6 describes the simulator in somewhat more

detail.

LOCAL L
0

TL 10 10 + M L 1I0 + M L I0 + M 0+ML'

L 10 to 10 + M L
0 + M L

1 0 + M L
+ M F

FOREIGN R S B
NODE

IOML 0o+ML+ MF 0+ ML+MF

CF.0 IO+ML IO M F IOML+MF

Figure 6.8. Symbolic information flow diagram illustrating alerting.

The above discussion is for two nodes. In practice more nodes will be involved, but that

does not change the position track merging algorithm. It can be applied to each foreign position

track individually in order of reception. The processing order for nearly simultaneous receptions

does not matter; the merging operations are commutative.

6.2.6. Position Track Broadcast Policies

The preceding section described what to broadcast and how to use the broadcasts, but did

not specify when to broadcast. The rules that determine when to broadcast are broadcast policies.

There are many policy options. The test-bed tracking algorithm places only two weak con-

straints. First, a node should broadcast an aircraft track when it predicts that, for the first time,

85

the aircraft is entering the detection range of a sensor attached to another node within broadcast

range. Such a broadcast constitutes an "alerting" message to the receiving node. Second, a node

should broadcast whenever a target is leaving the area of coverage of its own sensors. This

broadcast is a "handover" message. Neither is essential but they are both clearly reasonable and

very useful as discussed below.

Aircraft tracks are a mechanism for storing and sharing information in a DSN. A node very

distant from an aircraft cannot detect it and therefore has no information to contribute to the

tracking process. Although it might do so, it need not maintain a position track for such a target.

In general, the question of which nodes maintain tracks for which targets is an important system

design issue. The choice we have made is to match the tracking coverage area of a node to the

coverage area of its attached sensors. This minimizes intemodal communication requirements

while fully utilizing all sensor data in the network. The two broadcast policy constraints men-

tioned above are reasonable consequences of this decision regarding track coverage area.

Implicit in the above discussion is the assumption that two nodes that simultaneously detect

an aircraft should be within broadcast range of each other. If this is not the case, it may be neces-

sary to forward track messages over multiple communication hops to reach a node that should

obtain a particular message. This could substantially complicate the communication system as

well as increase communication capacity requirements due to the message repetition.

Also implicit is the assumption that each node must model the sensor coverages of other

nodes. To do so in detail is difficult; but fortunately, accurate modeling is not required, espe-

cially if the modeling is conservative. The modeling is conservative if the model coverage area is

greater than the true sensor coverage. At worst this will result in a premature alerting message

that lacks some information that could have been added later. However, a greatly delayed alert-

ing message, which can result if the assumed sensor coverage is too small, can cause confusion.

The confusion will result if the receiving node initiates a track for the target before the alerting

broadcast is received. In this case there will be redundant tracks with different track identifiers.

(Assignment of unique position track identifiers is described in Section 6.2.8.) Smaller alerting

delays will result in some information loss but will not cause serious problems such as the crea-

tion of redundant tracks.

86

Each node must also model its own sensor coverage to decide when a received track broad-

cast should be ignored and when to delete tracks from its track file. When a track is deleted the

node must also broadcast the track if the track has been recently updated with local sensor data.

Otherwise, the most recent sensor information from the node will be lost forever to the DSN. This

last broadcast from the node is a handover message.

Although coverage models need not be accurate, provided they err on the conservative side,

they must be consistent from node to node. Otherwise, a node could send out an alerting message

only to have the neighboring node ignore the message.

The sensor coverage models used in the DSN test bed are very simple. Acoustic sensors are

assumed to have a circular coverage area, with perfect detection within the circle and no detec-

tions outside of the circle. The model also takes into account the acoustic propagation delay and

predicts the time at which sound from a target entering or leaving a coverage area will reach the

sensor. The coverage of TV sensors is assumed to be very large and was effectively ignored for

the purposes of position track broadcast policy. The DSN test bed performs reasonably well, even

though these models are clearly inaccurate, demonstrating that rough models are sufficient.

A broadcast policy resulting only in alerting and handover messages is a minimal broadcast

policy. Figure 6.9 illustrates the sequence of broadcasts that would occur under such a policy as

an aircraft flies through the acoustic coverage of four nodes. For simplicity, acoustic propagation

effects have been ignored in the figure. A step-by-step discussion of the broadcasts and tracking

functions for this simple case should serve to clarify how the overall system operates. For this

purpose we have assumed that the broadcast range is large enough so that every broadcast can

reach every node.

Assume that the target is initially within the coverage of Node i, and that Node I is track-

ing it. Node I broadcasts an alerting message as the aircraft enters the coverage region of Node

2. Both nodes subsequently and independently maintain tracks, starting with the same informa-

tion but adding different information from their local sensors. A while later the aircraft passes

beyond coverage of Node 1. When that occurs, Node I broadcasts a handover message and drops

the position track. Upon receipt of the handover message, Node 2 incorporates it into its position

track, thereby preserving the information acquired by Node I between the alerting and handover

message broadcasts. Nodes 3 and 4 will ignore the alerting message from Node I.

87

NODE COVERAGE
REGIONS

0ODE 2)ANDE 4

TIME LINES

S - RE T K S NODE I

I I
R- S/R - R S _ -- NODE 3

R-R R - S -am NODE 4 N

S -SEND TRACK MESSAGE R - RECEIVE TRACK MESSAGE

S/R- SEND AND RECEIVE TRACK MESSAGES

Figure 6.9. Illustration of track broadcast sequence for a single aircraft.

Node 2 similarly alerts Node 3 at the appropriate time. When Node I receives this broad-

cast, it ignore:; it since the aircraft is beyond the region of interest to Node 1. Nodes 2 and 3 both

broadcast alerting messages to Node 4. One of these will serve to initiate a track at Node 4 and

the other will simply be merged to improve the track. Nodes 2 and 3 receive each other's alerting

message and opportunistically incorporate new information into their tracks. At this point, Nodes

2, 3, and 4 all have identical position tracks.

The ultimate handover message from Node 2 is received by Nodes 3 and 4, and Node 2

drops the track after the handover broadcast. Nodes 3 and 4 both incorporate the new information

that has accumulated since the previous alerting message from Node 2. At this point the Node 3

and 4 position tracks are not identical, since each includes different information obtained from

their own acoustic sensors.

88

Note how information about the aircraft propagates across the DSN along with the aircraft.

Only those nodes which can detect an aircraft are "aware" of it.

The minimal broadcast policy contributes to system covertness and reduces communication

requirements, but there is a price to pay for the lack of redundancy, especially since broadcast

communications do not guarantee that all messages will be received. The most obvious problems

occur when alerting or handover messages are not received. More subtle problems result from

excessive reliance on local sensor data for lengthy time periods.

The more subtle problems were investigated in a series of experiments carried out with real

acoustic measurements. The test bed was used to process prerecorded acoustic data in real time

to experiment with different broadcast policies. The acoustic data were collected using a UH-I

helicopter and four acoustic arrays aligned roughly parallel to the flight path. The flight path was

west to east, from left to right across Figure 6.10. The figure shows the tracks produced in real

time by two of the nodes. Error ellipses provided by the tracker are also shown. The abrupt

changes in the tracks and error ellipses correspond to the broadcasts of alerting or handover

messages.

The track generated by the leftmost node was initially poor, but by the time the helicopter

left the coverage of that node, the tracking performance was much improved. In comparison the

track from the last node along the track is initially very good because of alerting messages

received from other nodes. It is important to emphasize that these tracks depend in a complicated

way upon the information from all nodes in this small network. No node performs tracking in

isolation from the others.

The maximal broadcast policy is to broadcast every time a track is locally updated with sen-

sor measurements. This prompt distribution of information will result in more accurate tracks as

illustrated in Figure 6.11. Everything is the same as in Figure 6.10 except for the broadcast pol-

icy which was made maximal. The performance improvement is most pronounced for the early

part of the track than for the later part. This behavior is representative of a more general observa-

tion: Prompt distribution of information is most important when track accuracy is poor and there

is substantial room for improvement. This is usually true near track initiation time. It is also

true, although not illustrated by the example, that prompt distribution is much more important for

89

4

(a)

3

0

z

0

2

4

(b)

3

2

09

4

3

2

0

-1

-2

4

(b)

3

0
0[

-1

0 -21

-5 -4 -3 -2 -1 0 1 2 3

EAST (kin)

Figure 6.11. Helicopter tracking example for maximum communication policy'. (a) Track from leftmost node;
(b) track from rightmost node.

91

maneuvering targets than for nonmaneuvering targets. It is also obvious that a maximal broad-

cast policy has the additional advantage of minimizing the effect of "lost" broadcast messages,

i.e., those position track broadcasts that are not received by every node within range for some

reason.

The test-bed system provides for a parametrized family of options covering the spectrum

from minimal to maximal broadcast policies. First, provision is made to broadacst every N-th

time a position track is updated. All nodes operate with the same value of N but each node

maintains a separate counter for each target. Second, broadcasts of position tracks with large

error covariances can be suppressed on the assumption that they will not provide much significant

information. When no broadcasts are suppressed and N=I, the result is the maximal policy. If no

broadcasts are suppressed on the basis of error covariances but N is very large, the policy is

minimal. If broadcasts are suppressed on the basis of error covariance and N is very large, the

policy is still essentially minimal but the criteria for initiating tracks becomes more conservative.

Thus an alternative to viewing error-covariance-based broadcast suppression as a broadcast pol-

icy is to view it as a modification of the definition of what constitutes a track.

It is easy to conceive of more complex policies that call for frequent broadcasts immedi-

ately after track initiation and during maneuvers, and for minimal broadcasts otherwise. But the

simple options described above were found adequate for our investigation of communication

issues.

It is not clear if the communication saving from other than optimal policies is worth the

additional system complexity or reduced tracking performance that it might entail. The answer

will be application dependent. However, it should be noted that there is an obvious alternative to

our approach to distributed tracking if a maximal broadcast policy is deemed necessary to max-

imize tracking performance. The broadcast of position tracks is the primary mechanism that we

selected for sharing information between nodes. This is the best approach if broadcasts are not

frequent. But we could have elected to broadcast sensor measurements as soon as they were

available and have each node directly integrate them into tracks. The tracker performance would

be the same as with our approach and a maximal broadcast policy. The number of bits required

to communicate a total and common position track pair is generally greater than the number

required to communicate a sensor measurement. Thus, the alternative approach might achieve

92

the performance of our system with a maximal broadcast policy with less intemodal communica-

tion. It should also be noted that this alternative could be implemented using the same tracking

algorithms that we have developed.

6.2.7. Acoustic Azimuth Tracking

Nodes will detect targets for which they do not yet have position tracks. For example, a

node at the edge of a DSN cannot form a position track using only its own acoustic azimuth

measurements. (It is conceptually possible to imagine a track with an exceedingly large

confidence region, but we have elected to not take that viewpoint.) Acoustic azimuth information

from two or more sites is required to begin tracking the position of an aircraft. One option for

organizing and exchanging this information, the one selected for the test bed, is to form azimuth

tracks at each node and to broadcast the tracks between nodes. The azimuth tracks are obtained

by filtering acoustic azimuth measurements to obtain estimates of azimuth time rates of change as

well as azimuths. These two quantities are used by the track initiation algorithms described in

Section 6.2.8. Of course, acoustic azimu:h tracks must be obtained without having estimated air-

craft positions.

An azimuth track is maintained by a node until used to initiate a position track or until a

foreign position track is received with which the azimuth track can be associated. The azimuth

track is then discarded. In addition, an azimuth track is discarded if no new measurements have

been added to it for a long time period.

The acoustic azimuth tracking method is the same as that for updating position tracks with

sensor measurements, namely Kalman filtering. This requires a dynamic model for the acoustic

azimuth measurements, but the model cannot depend upon the aircraft spatial position. We have

elected to model the azimuth measurements by assuming a a constant azimuth rate. This is at

best a rough approximation since the azimuth rate during a straight constant velocity aircraft

flyby starts at zero, becomes large, and dies away to zero. Among others, the azimuth model

exactly matches an aircraft flying in a circle around the sensor at constant speed or traveling in a

spiral with continuously changing speed. But the azimuth tracker is important only during early

detection, before a position track has been established. Fortunately, the model usually serves

quite well up to and through the time of position track initiation.

93

Let p9(t) and v9(t) be the acoustic azimuth and azimuth rate of an aircraft relative to a node

at time t. These two quantities can be grouped into a 2-dimensional state vector XA (t):

XA(t)= L0v (t) (6.30)

Assuming a constant azimuth rate, the state XA (t) at time t can be calculated from the state at

time t by:

XA (t) = AA (T -) XA (t) (6.31)

where

Estimated state vectors XA, denoted by a ' over the state symbol, can be extrapolated using the

same equations.

State estimate confidences are stored as a covariance matrix EA. The formula for extrapo-

lating the covariance matrix is:

YT- ('T I t) = AA (T - t0 XAt 01t) AA (Tr - t) r + -A (T - t) (6.33)

where

-=A (d) = aA BA (d) BA (d)T, (6.34)

[dz

BA(d)=
(6.35)

and aA is a constant. The constant aA can be considered simply as a parameter used to control

the loss of confidence in the extrapolated state estimate or it can be viewed as the variance of a

random azimuth acceleration.

Acoustic azimuth tracks are updated using acoustic azimuth measurements. The first step is

to extrapolate the acoustic azimuth track to the measurement time, yielding XA (r I t) and EA (I t).

94

The updated state estimate and covariance are then computed using the conventional Kalman

filter algorithm [18] according to:

XA(TIT))=XA(TIt)+ K,(T) Iz(T)- 4A(TIt)] (6.36)

and

TA(tIt)= I-KAA(t)CAA(t)) -A (tt) (6.37)

where

AA (r 10 flO(t10 = CAA (0XA (T 10, (6.38)

.A () = I tA (Tit) CA ()T ICA () T-4 (tIt) CAA (t)T + EA (T) (6.39)

and

CA (T) = H . (6.40)

For the Gaussian probability density function interpretation of the acoustic azimuth track and the

measurement, the Kalman filter implements a Bayesian combination of the information inherent

in the acoustic azimuth track and in the measurement.

As noted previously, the azimuth rate during a straight constant speed flyby is not constant.

It can become large when the point of closest approach to a node is small. When that occurs the

acoustic azimuth track can diverge. The random acceleration constant used in extrapolation of

the state covariance can be adjusted to provide some immunity to this at the cost of less accurate

azimuth tracks. In practice we have not found divergence to be a serious problem, primarily

because position tracks tend to be initiated before targets approach their points of closest

approach. Even when that has not been the case, the system quickly recovered by forming a new

acoustic azimuth track of the aircraft. The usual effect of these rare divergences was a delay in

acoustic position track initiation. These conclusions were obtained primarily from experiments

with low-speed helicopter targets and might require some revision for higher speed targets.

Acoustic tracks must be initiated before Kalman filtering algorithms can update them. The

technique used in the test bed is simple but effective. Two sequential acoustic azimuth measure-

ments are required. The second measurement is taken as the azimuth estimate and the difference

95

between the two azimuths, normalized by the time difference between the two measurements, is

used as the azimuth rate estimate. The state covariance is computed from measurement covari-

ances assuming that the two measurements are independent Gaussian random variables. In this

process the confidence assigned to the first measurement is artificially reduced by increasing its

measurement variance, just as state covariances are increased in extrapolation. This avoids

assigning too great a confidence to the azimuth rate component of the estimated state vector.

6.2.8. Acoustic Position Track Initiation

Acoustic position track initiation processing is performed whenever a node with a local

acoustic azimuth track receives an acoustic azimuth track from another node. If possible the two

acoustic azimuth tracks are used to form a position track. If a position track is initiated it is

assigned a track identifier that uniquely identifies it. The position identifier consists of a concate-

nation of the acoustic azimuth track identifiers used to form the position track. Each azimuth

track identifier consists of an identifier for the node that produced the azimuth track followed by a

number assigned by that node. The concatenation of azimuth track identifiers to form position

track identifiers is performed in lexical order to avoid ambiguity.

Track naming conventions, in conjunction with other system design features, are designed

so that all the tracks for a particular aircraft will be assigned the same identifier by every node in

the network. Clearly, any nodes forming a track with the same two azimuth tracks will assign the

same identifier. Thereafter, if alerting messages arrive early enough to be effective, other nodes

will assign and use the same identifier. But problems can occur. If more than two nodes almost

simultaneously initiate a track but do not use the same azimuth measurement pair, then multiple

identifiers will exist. This is an unlikely event, but it has occurred in one case during test-bed

experimentation. The result was two poor tracks when there should have been one good track.

This demonstrated the need for algorithms to detect when this happens and to take corrective

action. Another situation when multiple identifiers may be assigned to the same target is when

the system loses a target for a short period of time and later initiates a new track. This is not as

serious because it does not affect the quality of the tracks, although one might ultimately wish to

associate such track segments with each other. The detection and combining of tracks with dif-

ferent identifiers might be a higher level task included as part of the multisite data integration

96

function. (See Section 13 for more discussion. Although that discussion addresses multisite

integration, it is clear that techniques for the removal of redundant identifiers should be made part

of the distributed tracking algorithms whenever practical.)

The first step in combining two azimuth tracks to form a position track is to extrapolate

them to a common time. Let XtA (t I t), Z,4 (t4 I t.A), and XFA (FA I tFA), 14 A (tFA I tFA) be

the state estimate and covariance pair provided by the local and foreign node, respectively, and

let T be the common time. (As implemented in the test bed, t is usually the last time the local

acoustic azimuth track was updated, tFA is the last time the foreign acoustic azimuth track was

updated, and r is the next local measurement time.) Extrapolation is based upon the same mea-

surement model as azimuth tracking.

The remainder of the procedure is analogous to triangulation but more complex. The added

complexity has three sources: the need for velocity as well as position estimates; the need to com-

pensate for acoustic propagation delays; and the need to calculate covariances.

Neglecting acoustic propagation delay, the problem of aircraft location using two azimuth

estimates reduces to the geometrical problem of finding the intersection of two lines radiating

from two sensor locations. It can also be viewed as solving two equations in two unknowns. Each

equation expresses the azimuth at one node as a function of the aircraft position (in two dimen-

sions). There is one equation for each sensor site. The "knowns" are the estimated azimuths and

sensor locations, and the "unknowns" are the estimated position coordinates. A solution exists

under most circumstances although it does not exist when the estimated local and foreign

azimuths are identical or reciprocal.

Differentiating those two equations with respect to time gives two more equations. These

equations introduce azimuth rates as two new knowns and aircraft velocities as two new un-

knowns. Under the same circumstances as above, the resulting four equations can be solved for

the four "unknowns," the elements of the aircraft's position track state estimate.

The introduction of acoustic propagation delay requires that the model for aircraft motion

be incorporated into the equations. The model is used to move the aircraft backward in time as in

Section 6.2.4. The resulting equations are nonlinear but fortunately can be rewritten to yield the

following nearly linear and easily solvable matrix equation for the position track state estimate:

97

-SiPLO(ItL) OSL (TtL)SLE ____

C C

VLe(TtL) COSPLOWUtL) VLe(TItLA) SifPPLO(TtLA) SiflPLd(tL,) -COSPL,(TtLA) 1XP(Tl I) =

VF8('T I FA) COSPF9TI IFA) I'FO(Tt 4A)sinfPF 3(Tt 4A) SinIpFe9 I IFA) -COSPFO(TI 4-A)

(6.41)

SLE COSPL O(T I fL) -SL.J SiflPL O(ItL)

SFE COSPFeO(T I tFA) - SFN sjlPF O(T I tFA) + gN()'E(T E()1, TIT]I
rL +(I tLPNSLV C)SVEQ(TL)P)+(SLEIir)PN@IT)ILAC

VF O(T I tFA) [FN COSpFe0(tFA)+ SFE SinPF e(T ItFA) J

where PL e~t I tLA) and I'L ()(T I tLA) are the extrapolated local azimuth track azimuth and azimuth

rate estimate, PF (T I t-A) and vF e('rI 4-A) are the extrapolated local azimuth track azimuth and

azimuth rate estimate, sLN and sLE are the north and east position coordinates of the local acous-

tic sensor, and sFN and sFE are the north and east position coordinates of the foreign acoustic sen-

sor. By introducing a new variable

=AVN(T I) IE (TI T) -16E(C I T)'4(TI T) (6.42)

we can reduce the problem of solving for XP (r I r) to the problem of solving a quadratic equation

for , substituting the solution back in above, and then solving the resultant linear matrix

equation.

An apparent complication is that there can be two solutions for . Fortunately it can be

shown that only real solutions are possible, and one always turns out to be extraneous. The

extraneous one is revealed by substituting the solution back into the equations for the azimuths as

a function of the target state. At least one of the these will be the reciprocal of the measured

values.

There are also cases when there are no solutions for Xp, just as there are no solutions when

triangulating with identical or reciprocal bearings. The no-solution regions differ from those for

98

simple triangulation. However, the no-solution regions are still confined to one-dimensional sub-

spaces withing the two-dimensional surface in which the aircraft is located. As a result, position

tracks can be initiated almost everywhere using acoustic measurements.

The error covariance matrix for a new position track is estimated using the covariance

matrices of the two contributing azimuth tracks. The four equations that relate the acoustic

azimuth track state estimate to the position track state estimate are again relevant. From them,

the partial derivatives of the acoustic azimuth track state estimates with respect to the position

track state estimate can be calculated and arranged into matrices. Let ALa, and AFAp denote the

partial derivative matrices: one for the local azimuth track and the other for the foreign azimuth

track.

The formula for ALAp is as follows:

= CLAP] (6.43)

where CLAP is the same as CAp in Section 6.2.4,

r

- LO(T I tLA) [N (t I T) -N (T I)- SLN

PL r11 t)C

L'L (t I tLA) IfE(T IT) E(t I T) SLE
13L ,TL(t)&8c

C'p=- YL CLAP + PLE i - (T)S6] (6.44)
-A (T IT) - E (TI T)8 -SLE

PL L(t) SC
g, f(rC I - 17,('1 [)S - SuL'

P L) L (T) 8 C

=N(tl T) N(rlt) +E(tIT)IE(TIT) (6.45)YL = -
3 L 2t')2

99

eL (T) is the same as f (r) in Section 6.2.4, and 3L is the same as 13. The formula for AFAp is iden-

tical except that it uses the foreign acoustic azimuth track state estimate and sensor location.

The partial derivative matrices are used to calculate the position state covariance as follows:

Ip ('T I 'T) = IAA T, r (T I "r)- I AtW + AFAO, T J-F, (T: I T)- I AFO, -I (6.46)

As the equation makes clear, the position track state covariance is large (and so confidence in the

estimate is small) when either the local or foreign acoustic azimuth track state covariances are

large. The position track state covariance is also large when both Awp and AFA, are small. The

partial derivatives are dependent on the geometry of aircraft and sensors. In some geometries the

partial derivatives are small, resulting in large confidence regions for newly initiated tracks.

These geometries are "close" to where no solution exists for the position track state estimate. The

calculated state covariance is used to detect this situation and suppress track initiation. When a

track is initiated, both total and common tracks are initiated.

Note that when a new position track is created, the aircraft is in the coverage of at least the

local and foreign nodes that produced the azimuth tracks used to initiate the position track.

Whenever a node initiates a track it must broadcast it to alert the foreign node which, for what-

ever reason, may not have independently initiated a track. If the foreign node has independently

initiated track, there still is no problem because it will have assigned the same track identifier as

the local node. The aircraft may also be within the coverage of other nodes and the alerting

broadcast will serve to alert them as well.

As with other parts of the tracking algorithm, the acoustic position track initiation algorithm

relies on an acceleration-free model of target motion. Acoustic delays can cause large track initia-

tion errors when there is a significant change in heading or speed during the time between when

the sound used for track initiation was emitted and the track initiation time t. Even earlier

maneuvers, resulting in inaccuracies in the acoustic azimuth ti cks, can increase position track

inaccuracies. But even without significant aircraft maneuvers, we have observed initial position

errors larger than those expected on the basis of the calculated covariance matrix. The reason is

not fully understood. A possible explanation is that the covariance matrix assigned to a newly ini-

tiated track is smaller than it should be due to the linearization involved in the calculation of the

covariance matrix. Fortunately, in most cases, the initial errors have been promptly damped out

by subsequent track updates.

100

6.2.9. Azimuth Track Broadcast Policies

Position track initiation using a particular acoustic azimuth track could be attempted as

soon as the acoustic azimuth track is created from a sequential pair of acoustic azimuth measure-

ments. In practice, both the azimuth track state covariance and the resulting new position track

state covariance would often be unacceptably large. This is why position track initiation is

suppressed until the contributing acoustic azimuth track state covariances are sufficiently small.

Since an acoustic azimuth track will not be used for position track initiation unless its state

covariance is sufficiently small, there is no point to broadcasting it unless its state covariance is

sufficiently small. Thus, the algorithms incorporate an acoustic azimuth track broadcast policy

matched to the criteria that determine if an azimuth track is good enough to participate in track

initiation. All acoustic azimuth tracks with sufficiently small covariances are broadcast. Tracks

below the covariance threshold are not broadcast. (Actually, the test bed provides for broadcast-

ing every Nth track value that is below the covariance threshold, but essentially all experimenta-

tion has been performed with N= 1.)

A more restrictive broadcast policy, intended to further reduce network communication

requirements, would be to broadcast the first time that the covariance falls below an acceptance

threshold, and never again. However, this policy can create problems. Suppose that the local

acoustic azimuth track is the first to have a sufficiently small state covariance. It would then be

broadcast, but the foreign node would not use it, at least not until later. Further assume that the

covariance of the azimuth track at the foreign node eventually drops below the threshold and it

then broadcasts. Both the local and the foreign nodes can now attempt position initiation. But

the geometry of the aircraft and sensors may be such that a position track will not be initiated

because the position covariance is too large. If neither node broadcasts subsequent versions of

their '-oustic azimuth tracks, then neither will ever initiate track, even after the geometry

changes to a more favorable one. Broadcast communication failures have a similar effect for the

minimal broadcast policy.

6.2.10. Tracking Multiple Aircraft

The above sections emphasize single aircraft tracking without false detections. In practice,

several aircraft may be within the coverage of a single sensor, resulting in several simultaneous

101

azimuth measurements. In addition, the sensors may produce false detections that result from

general background noise and other phenomena. (See Figure 4.6 as an example of a two target

situation where lower peaks could also be taken as detections.) The distributed tracking algorithm

has several features for coping with multiple aircraft and false detections.

At any given time there will be several position and acoustic azimuth tracks active in any

given node. If the node has a TV sensor, it must decide which TV azimuth measurement, if any,

to use in updating each position track. If it has an acoustic sensor, it must decide which acoustic

measurement, if any, to use in updating each position and/or acoustic azimuth track, which to use

to initiate new acoustic azimuth tracks in combination with old acoustic azimuth measurements,

and which to save for future use. This problem is known as the data association problem and has

been much studied [191, Our approach has been to employ simple ad hoc data association

methods while another DSN contractor has been investigating more sophisticated methods [20].

The test-bed approach to data association can be simply illustrated by considering the asso-

ciation of TV azimuth measurements and position tracks. Corresponding to each position track is

an extrapolated TV azimuth and an associated variance. A TV azimuth measurement is associ-

ated with a position track if the difference between the measured and extrapolated azimuths, nor-

malized by the sum of their variances, is sufficiently small and if it is smaller than that for any

other TV measurements.

These association criteria can be stated with more mathematical precision. Assume that

there are N TV azimuth measurements at time T, represented by measurement and measurement

variance pairs zrvpi (T) and Orvpi (,r) for i from 1 through N. Further assume that there are M

(total) position tracks all extrapolated to time T, represented by state estimate and state covariance

pairs Xpj (r I t) and ±pj (r I t) for j from I through M. The i th TV azimuth measurement is associ-

ated with the j th position track if and only if

Z71,Pi(M)_ ZTVPj(. It) rk2 M[v - 7p)(t 2 1
C'Pj () -tPj (T I t) CTvpj (T)T + O)7M k C rv,(T) Ypk(TIt) Cnp&t)T + Orvpi(T)

(6.47)

and

102

C2'vpy () pj (Tr I t) C1,'p, (T)r + 8n71 () Trvt (6.48)

where Tvp is some threshold and where, for the j th position track, vpj (T I 1t), e6TvjCr It), and

CTIpj (T) are the same as Tvp (C I t), 6)vp (r I t), and Cyvp (T) in Section 6.2.3. If a TV azimuth

measurement is associated with a position track, then the position track is updated as in Section

6.2.3 using the associated measurement. Unassociated TV measurements are discarded.

Acoustic azimuth measurements are handled similarly, subject to certain priorities for using

the measurements. Acoustic measurements are first associated with position tracks if possible

and the position tracks updated as in Section 6.2.3. Next, acoustic measurements that are not

associated with position tracks are associated with acoustic azimuth tracks if possible. The

acoustic azimuth tracks are then updated as in Section 6.2.7 using the associated acoustic azimuth

measurements. (At most, one acoustic azimuth measurement will be associated with a single

azimuth track.) The remaining unassociated acoustic azimuth measurements are compared with

old unassociated acoustic azimuth measurements to determine if a new acoustic azimuth track

should be initiated as described in Section 6.2.7. Any of the new acoustic azimuth measurements

that are left unassociated at this stage become old unassociated acoustic azimuth measurements

the next time the data association procedure is applied. All of the association criteria used in this

process are variations on Equations (6.47) and (6.48).

The position track files typically contain several tracks. Position track broadcasts also con-

tain several tracks. Pan of the data association problem is to decide which pairs of local and

foreign position tracks should be combined. An approach similar to that for sensor data associa-

tion could be used but there is an additional option available. As described in Section 6.2.8, the

system incorporates track naming conventions designed so that different nodes usually have the

same name for tracks associated with the same target. Since the assignment of unique track

identifiers is a specifically distributed aspect of the test bed, it was decided to use these identifiers

as the association mechanism for position tracks. Thus, position track association is done using

the track identifiers. Two tracks are associated if and only if their identifiers match. Position

track association based on "closeness" in position and velocity could easily be added, and should

be to catch redundant tracks, but is not now part of the system.

103

At any given time, a node may have several local acoustic azimuth tracks and receive addi-

tional ones from a foreign node. The foreign and local azimuth tracks must be paired for presenta-

tion to the track initiation algorithm. The solution used in the test bed is to form all possible pairs

of local and foreign acoustic azimuth tracks into a list and run through the list, trying all of them.

When position track initiation succeeds for a pair, all other pairs involving the same local or

foreign acoustic azimuth track are deleted before continuing down the list. This procedure can

obviously result in false pairings that nevertheless produce a track initiation. Such a mistake

leads to the creation of a position track for which no aircraft exists, a "ghost" track. Because no

aircraft exists for a ghost track, it is rare that later measurements continue to reinforce the track.

The confidence of ghost tracks tends to decline steadily with time. The system deletes position

tracks with low confidence on the assumption that they are ghosts. Because of the random effects

and the asynchronous nature of much of the system operation, it is rare for an incorrect associa-

tion to occur twice.

It is also possible to experience acoustic azimuth tracks even when no aircraft or other

machinery is nearby. Such false tracks result from random sensor noise and are uncommon.

These tracks are rarely updated and tend to persist for only a few time samples. They are quickly

deleted because they are not updated. Nevertheless, false acoustic azimuth tracks do occasionally

contribute to the creation of ghost position tracks.

6.2.11. Possible Improvements

Baseline distributed tracking algorithms have been developed but they require further

evaluation and refinement before they will be ready for use in an operational system. Areas

requiring more work include the handling of multiple and maneuvering targets and aircraft alti-

tude effects. Following is a brief discussion of these and other areas for possible improvement.

The simple test-bed data association procedures work reasonably well for simple situations,

but there is room for improvement. Following are two simple and obvious examples. When two

or more measurements are close together, good measurements may be discarded or the wrong

measurement may be associated with a track. Second, the position track association procedure

does not recognize the rare situation when two position tracks for the same aircraft have different

names.

104

Research performed by another DSN contractor, ADS, suggests how improvements might

be made [20]. Multiple possible associations should be allowed and the consequences of each

pursued for several time steps before deleting the less likely in favor of the more likely associa-

tions. For example, if two azimuth measurements could reasonably be associated with a position

track, that position track should be duplicated and one copy updated using each of the azimuth

measurements. Another example: If the position track initiation procedure might succeed for

two foreign azimuth tracks paired with the same local acoustic azimuth track, apply it to both

pairs and create two new position tracks. Note that this will require that a record be kept of which

position tracks (and acoustic azimuth tracks) reflect mutually exclusive associations. This is to

assure that fundamentally conflicting explanations of the data are not eventually accepted. Alter-

native track hypotheses can be kept active until more information is acquired. Incorrect associa-

tions will eventually be revealed if tracks are rarely updated or by other "aberrant" behavior.

Keeping a record of which tracks are mutually exclusive reduces to keeping a record of

what measurements went into the tracks. Such a record can grow without bound as new measure-

ments are acquired. This must be controlled and limited; a difficult task in a DSN where the

record must be distributed across nodes. How best to maintain these records while avoiding

excessive internodal communication is unclear at this time. Additional research and experimenta-

tion are needed on this problem.

Problems with maneuvering targets have been mentioned several times. There are tech-

niques for handling maneuvers[21], developed primarily in the context of centralized tracking

systems. The extens.'on of these techniques to distributed tracking systems is a subject of on-

going research. One approach to maneuver detection is to make multiple, mutually exclusive

hypotheses about the occurrence and magnitude of maneuvers. The effectiveness of this

approach is not yet clear.

Aircraft and sensor geometries that lead to poor track initiation performance have not yet

been fully analyzed. More analysis and experimentation is needed to better understand failure

modes and exploit this understanding to improve system performance by improving the track ini-

tiation process. This could also result in reduced computation and communication loads by

suppression of the broadcast or processing of azimuth tracks that should not be used for track ini-

tiation. As part of this process, the use of pairs of acoustic azimuth tracks for track initiation

105

should be evaluated in detail and compared with other alternatives. One of these is to directly use

N-tuples of acoustic azimuth measurements from pairs of nodes.

As one would expect, and experience with the DSN test bed has shown, the distributed

tracking algorithm tracks ground vehicles and machinery as well as aircraft. The time behavior

of tracks that correspond to ground activity is markedly different from those that correspond to

aircraft. It should be possible to recognize ground activity and adapt the processing to improve

performance and conserve processing resources. Expert system techniques might be used to

recognize unusual tracks, including ghost tracks, that should be eliminated. Experimentation is

required to evaluate the feasibility of this idea.

The acoustic direction finding algorithms provide azimuth information and the tracking

algorithms assume that all targets are at very low (zero) altitude. However, aircraft will normally

be detected at altitudes up to at least a few kilometers. More analysis and experimentation are

needed to better understand the system sensitivity to aircraft altitude. Research should also be

directed toward developing algorithms that specifically consider the three-dimensional problem.

One option is to develop acoustic signal processing algorithms that provide elevation as well as

azimuth information. This could be used to identify higher altitude targets to exclude from the

tracking process. Alternatively, the tracking algorithms could be changed to track in three

dimensions. Compared with excluding high-altitude targets, the success of this approach would

be more dependent upon the accuracy of the sensor elevation measurements.

6.3. Delayed Acoustic Tracking

In the initial phases of the DSN project there was emphasis upon acoustic position track ini-

tiation and tracking with minimal assumptions concerning aircraft motion [22-241. The thought

was to defer the introduction of target motion models and thereby avoid problems that might

result when the model was incorrect. Delayed acoustic tracking is a consequence of this

approach. That is, because of acoustic propagation delays, it is possible only to know where air-

craft have been but not where they are. It was recognized that dynamic models would eventually

be needed to extrapolate tracks to current time and to integrate TV sensors. The plan was to do

this in a second stage of tracking where aircraft locations derived from pairs of sensors would be

combined into overall tracks.

106

Two different target location algorithms were developed consistent with this philosophy.

Each one estimates aircraft locations using acoustic azimuth measurements from two nodes.

One, the "possible position method," takes two acoustic azimuth tracks as input and produces an

estimated aircraft position for a time T which is - seconds in the past. The delay T is an algorithm

parameter. If r is less than the propagation time from the aircraft to the most distant of the two

sensors, no solution will be found. The other, the "reflection method," takes as inputs an acoustic

azimuth track from one node and a single acoustic azimuth measurement from the other and pro-

duces an estimated aircraft position as well as an estimate of when the aircraft was at that posi-

tion. Assuming that the node contributing the single azimuth measurement is furthest from the

sound source, this algorithm estimates the minimum value of C for which a solution can be

obtained. Both methods assume that the speed of sound is known. Each makes use of acoustic

azimuth tracks. Dynamic models are utilized only to generate azimuth tracks (see Section 6.2.7.).

Neither requires models for aircraft motion in space.

The possible position method was so named because it uses a locus of possible aircraft posi-

tions for each acoustic azimuth track. A position estimate is obtained where two of these possible

position curves intersect. The method is illustrated in Figure 6.12 which shows two hypothetical

acoustic azimuth tracks, the corresponding possible position curves, and their intersection. The

possible position curve for Node A is constructed as follows. Given the time T at which the air-

craft is to be located, the sound from the aircraft must arrive at Node A some time between T and

the current time. If sound was radiated at time T and received at time t, then it must have prop-

agated over a distance of t-T, where c is the speed of sound. Thus, at time T an aircraft might
C

have been located at this distance from Node A in the direction measured acoustically at time t.

This is a possible position at time T corresponding to the measurement at time t. The entire pos-

sible position curve is produced as t sweeps from T to the current time. The possible position

curve for Node B is obtained in the same way.

There are at least two alternatives for selecting T in a real-time system. One is to select T

to be a fixed time in the past. Long distance acoustic detections will never be utilized if T is too

recent. If T is in the distant past, then all estimated positions will be for the remote past and may

be of little current interest. One solution to this problem is to duplicate the entire possible posi-

tion target location process for several different values of delay. This will significantly increase

107

OBSERVED FROM NODE A

I I

I- I I

,C OBSERVED FROM NODE B41

I I
I I

r CURRENT
~-TIME -

LO I SSIBLE LOCATION

CURESFO TIME T

NODE NODE
A

Figure 6.12. Illustration of location using possible position curves. Hypothetical
azimuth-vs-time histories are illutratedfor two nodes along with the target position at
the intersection of possible position curves derived from the azimuth time histories.

the computational load as well as the complexity of the software. The added complexity is

because a single value of T can appear many times, corresponding to different values of delay as

real time progresses.

These difficulties with the possible position method motivated the development of the

reflection method to estimate the aircraft location at the most recent time possible without model-

ing aircraft motion. Figure 6.13 illustrates how this method works. Suppose that Node A has

been receiving signals from the aircraft for some time when Node B first detects the target at

azimuth OB. The target could have been at any point along the straight line extending out from

Node B when it radiated the sound resulting in the measurement 0a. Each position along that

line corresponds to an angle OA that would be measured but at a different time at Node A. If the

travel times of sound from the target to A and B, respectively, are tA and t8 then A would have

108

TARGET

tB tA

0- d

NODE NODE
B A

OBSERVATION BY A
__.TRANSMITTED TO B

I REFLECTION CURVE

CORRESPONDING TO
INTERSECT.OBSERVATION a

CURRENT

4 4- TIME

Figure 6.13. Illustration of location using the reflection method. (a) Target and node geometry:
(b) illustration of reflection method. See text for discussion.

observed the target at a time 8,=tB-tA in the past. For all angles for which the lines from A and

B intersect it can be shown that

S=Ad sin (0 a)-sin (08) (,9
C Sin ()a +B)

This equation can be used to translate the single observation OB into a curve of possible observa-

tions of OA versus 8, as shown in the figure. Each point on this curve is a "reflection" of the

measurement at B into a possible measurement at A; hence, the "reflection method." The intersec-

tion of the reflection curve with acoustic azimuth track from A gives the angle at A corresponding

to the measurement at B. The target can now be located by triangulation. The time at which the

109

target was at this position can be determined by subtracting the travel time to Node B from the

observation time at Node B.

The reflection method can result in zero, one, or more intersections. Zero intersections sim-

ply means that the measurement at B cannot correspond to a previous measurement at A. Single

intersections correspond to aircraft positions. When there are multiple intersections, one will

correspond to the true position and the others to ghost targets that must be identified, perhaps by

tracking them for a short time. In the case of multiple azimuth tracks and one new measurement

there may be solutions for more than one of the azimuth tracks, a classic ghosting problem. All

of these situations can be handled and do not constitute fatal difficulties.

But there were more serious problems that were not specific to the reflection method. They

were fundamental to the deferred modeling approach and tracking by combining position esti-

mates from pairs of nodes. These result in ineffective use of measurement data and substantial

complication of the overall tracking process.

If there is a flight segment where only one node can detect an aircraft the measurements for

that segment will be used ineffectively. Two nodes are required to locate the aircraft, so the mea-

surements from the one node must be discarded without ever being used.

The problems, particularly with regard to complexity, are compounded when the step must

be made from delayed two-node position tracks to current time tracking, which requires the use

of dynamic models. Assume that Kalman filtering algorithms can be developed to process pair-

wise target position estimates and extrapolate them to the current time. For simplicity also

assume that there is only a single pair of nodes. The propagation time to the further of the two

nodes determines the time delay associated with the most recently available two-node position.

Note that there is no mechanism for using the most recent and probably best measurements from

the closer of the two nodes. There is a way out. It is to develop Kalman filters that directly pro-

cess the more recent acoustic data from the closer node. That is, the system must be augmented

by the addition of the track updating algorithms described in Section 6.2.4.

Now consider the same situation, but at the next measurement time. A more recent two-

node position estimate can now be calculated using the model-free two-node location algorithm.

This time the algorithm will make use of a more recent measurement from the closer of the two

nodes. But the acoustic measurement from the closer node has already been used to update the

110

current time track. Again, in theory, there is a solution. The current time track could be backed

up, the information from the problematic azimuth measurement removed, the track updated with

the new two-node location and, finally, made current by reintroducing the most recent azimuth

measurements from the closer of the two nodes. It might even be possible to remove the informa-

tion from the offending measurement without the need to remove and reintroduce the information

from the more recent of the measurements. Alternatively note that the new two-node location is

obtained only because there is a new azimuth measurement available from the more distant of the

two nodes. Thus, the update with the new two-node position could be skipped altogether and the

track could be updated directly using the new azimuth measurement. This is possible, but com-

plicated when compared with using target motion models from the start and performing all loca-

tion and tracking in terms of current time.

The complications are multiplied when there are more than two nodes participating in a tar-

get track. Since target dynamics are not modeled to calculate two-node locations, each pair of

nodes will produce target locations for different past times. Moreover. locations calculated using

different pairs of sensors are not statistically independent and their functional relationships are

complicated. If they are combined without recognizing this functional dependence the resulting

tracks will be suboptimal. The problem is similar to the local-foreign track combining problem

treated in Section 6.2.5, but probably more difficult to solve. The added difficulty is because the

basic data, two-node locations, are not independent for two different node pairs with a common

node. Although it might be possible to develop algorithms to handle this situation, the solution

would be at least as complex as the one of Section 6.2.5. and probably more so.

The growing complexity and suboptimality of the system quickly became clear as the focus

of the research moved from two-node locations to current-time tracking with any number of

nodes. This triggered a reexamination of the problem, resulting in the approach and algorithms

presented in detail in Section 6.2. Our conclusion is that the value of not making assumptions

about target dynamics does not compensate for the difficulties that result, especially since system

users need current time information, which ultimately requires dynamic models.

lll/])

7. DISTRIBUTED SURVEILLANCE SOFTWARE

7.1. Introduction

The distributed surveillance software for the DSN test bed consists of three elements: (1)

Tracking Software, (2) Network Control Software, and (3) Sensor Subsystem Software. The

tracking software implements the algorithms described in Section 6.2. It is organized as many

asynchronous modules interacting through message passing. This organization helped to control

complexity and is well suited to the DSN SNC multiple processor system. Modules can be writ-

ten with no concern for where they are executed. Interprocess communication is provided at exe-

cution time by the underlying NRTS message passing system, regardless of which processes are

loaded onto which processor.

The control software provides users with the ability to start and control the tracking

software, to collect data from nodes, and to display the collected data. This software consists pri-

marily of a User Interface Program (UIP) and display software that run on a user workstation. The

UIP interacts with nodes through special interface modules that are part of the tracking software.

Many user workstations can be used simultaneously. Experiments have been conducted with up

to three UIP systems in operation.

The following sections provide additional details about the design and implementation of

the tracking software and the procedures for running an experiment using the UIP. Sections 7.2

through 7.4 concentrate upon the nodal software that implements tracking functions and interacts

with the UIP. Section 7.2 describes the major functional elements and information flows. Section

7.3 explains the implementation of individual functions as a few cooperating processes. Section

7.4 covers the message structures used for interprocess communication. Section 7.5 describes

how the UIP program is used to operate the test bed. It gives some feel for the extensive interac-

tions required to operate the system and is intended to emphasize the need to automate the system

to avoid operator errors and expedite the control and operation of experimental distributed net-

works. It should be noted that, although this point is valid for any distributed network, the needs

are most stressing for an experimental system. An operational system would have more predeter-

mined system parameters and provide less operator flexibility than an experimental system.

113

PRIMARY DATA FLOW

UIP INTERACTION

ADMINISTRAUOR

TO/FROMM

PROCSSIN I NTERFAC E MEASUREMENT

SUBSYSTEM (SPS)

TO/FROM UIP TO/FROM UIP TO OTHER TO/FROM UIP

NODES

TO/FRO OTHRV

Figure 7. 1. Functional organization of tracking soft ware.

114

There are some software peculiarities that reflect the fact the nodal tracking software was

designed when several changes were planned for the UIP and SPS systems. It has not been possi-

ble to implement the planned changes and so compensating features have been added to the

tracking software. System implementation as cooperating message-passing processes made the

addition of these features a simple task requiring less effort than the implementation of the UIP

and SPS changes. The planned changes and resulting peculiarities are reviewed here to eliminate

subsequent confusion.

An initial version of the UIP was designed to provide nodal interaction on an ASCII, line-

at-a-time basis. This was because the initial experimental hardware provided only RS-232 serial

lines for communication between nodes and between the nodes and the UIP. With the introduc-

tion of Ethernets and radio communication, the plan was to make major changes in the UIP

including changes to support binary messages. The tracking software was designed and imple-

mented using binary messages for interprocess interactions. Unfortunately, time did not allow

the reimplementation of the UIP, and processes were introduced into nodes to translate ASCII

lines from the UtP into binary messages and vice versa.

The SPS interface, which uses a serial low-speed ASCII port for control and a parallel

high-speed port for data, also introduces unnecessary complexity into the tracking software.

Except for some discussion related to this interface, no details are provided about the software in

the SPS or the TV subsystems. Both of these interact with the UIP and tracking processes but

their implementation was driven by real-time processing and algorithmic considerations, not by

their role as part of a distributed surveillance network.

Other software supporting the tracking software is described elsewhere: specifically, the

nodal operating system is described in Section 3 and the communication software in Section 8.

7.2. Functional Elements

The main functional element of the surveillance software is the tracking algorithm, but

there are several supporting players. Figure 7.1 illustrates the seven functional elements, the pri-

mary data flows linking them. and the data flows between the functional elements and the UIP

program. The self-location algorithm supplies node locations needed by the tracker. Since the

115

test bed does not include a self-location system, the self-location algorithm is a shell, but it pro-

vides the correct interface. The azimuth measurement algorithm translates SPS output informa-

tion into the form required by the tracking algorithm, discarding less-credible detections in the

process. The SPS interface regulates the rate at which measurements are provided to the rest of

the system. It also mediates the setting of SPS algorithm parameters and the control of SPS

actions. The broadcast input filter simulates network connectivity. The administrator logs

performance data sent to it and handles other bookkeeping chores. The clock provides a time

reference for the other elements.

The primary data flows between functional elements in the SNC and between SNCs in dif-

ferent nodes are shown as heavy lines in the figure. Interactions with the UIP are shown as light

lines. The flows from the UIP fall into two categories: parameter values and commands. Param-

eter values are usually set at the beginning of an experiment. Commands may occur at any time.

They return parameter values and other status information to the control program. They also

change operating modes of the functional elements. Commands can be used to start and stop pro-

cessing and control information flows. The outward flows to the UIP are performance data: typi-

cally acoustic azimuth measurements, acoustic azimuth tracks, or position tracks.

The following subsections supply more details about the functional elements and their

interactions. Since there are many similarities for the different functional elements, only the

tracking algorithm is covered in detail. Other elements are treated only to the extent that there

are important differences or special features.

7.2.1. Tracking Algorithm

As Figure 7.1 shows, the tracking algorithm interacts with five other functional elements

within the node (including receiving data from other nodes through the broadcast input filter). It

transmits to other nodes via broadcast communication links and with the UIP program via point-

to-point communication links. If the node in which the algorithm is running has an attached TV

subsystem then the interaction with that TV subsystem (not shown in the figure) is, like the

interactions with the UIP, by means of point-to-point communication links.

The tracking process is triggered by the arrival of new acoustic azimuth measurements from

the acoustic measurement algorithm and also by the arrival of new TV azimuth measurements.

116

Messages from other nodes, passed along by the broadcast input filter, contain foreign position

and azimuth tracks. These foreign tracks are queued up for processing during the acoustic action

cycle triggered by the arrival of a message from the acoustic measurement algorithm. Broadcast

messages for other nodes, point-to-point messages to the UIP or video sensor, and messages to

the administrator also are generated during the cycle.

There are six phases in the acoustic action cycle.

(1) Extrapolate all tracks, including those received from other nodes, to the new

measurement time.

(2) Combine local and foreign position tracks and initiate new tracks from

azimuth track pairs.

(3) Associate acoustic azimuth measurements with position tracks, azimuth

tracks, and previously unassociated acoustic azimuth measurements.

(4) Update position and azimuth tracks using associated measurements. (New

azimuth tracks are created at this stage from pairs of new and previously unas-

sociated acoustic azimuth measurements.)

(5) Broadcast azimuth track and position information to other nodcs if they

satisfy the broadcast criteria.

(6) Send azimuth and position tracks to the UIP and/or to the administrator if this

is enabled, and send position tracks to the video sensor if there is one.

All six phases are skipped if the time tag on the acoustic azimuth measurement indicates that it is

too old. This is determined by comparing the time stamp on the measurement with the current

time obtained from the clock process. This simple expedient is used to allow the processing to

catch up to real time when a temporary overload occurs.

The video action cycle, triggered by the arrival of a set of video azimuth measurements, is

similar but simpler. There are three phases:

(1) Extrapolate local position tracks to the new measurement time.

(2) Associate video azimuth measurements with local position tracks.

(3) Update local position tracks with associated measurements.

All three phases are skipped if the video azimuth measurement data are too old.

117

Interactions of the tracking algorithm with the UIP programs take the form of messages sent

by the UIP to the algorithm or vice versa. These messages are processed as soon as practical but

outside of the acoustic and TV action cycles. They fall into five categories: control, display, log-

ging, cueing, and parameter commands.

The control commands are "enable," "disable," "reset," and "report control status." The first

three control a software switch. When the switch is in the disabled or reset position, all messages

other than those from the UIP are ignored. When it enters the reset state from any other state, all

stored tracks (azimuth or position, local or foreign) and all previously unassociated azimuth mea-

surements are discarded and all algorithm parameters are set to default values. The "report

control status" command causes the control switch position to be reported to the UIP.

The display commands are "forward azimuth tracks," "hold azimuth tracks," "forward posi-

tion tracks," "hold position tracks," and "report display status." The "forward" commands cause

the local azimuth or position tracks to be sent to the UIP for display. The tracks are sent during

the fifth stage of the acoustic azimuth measurement action cycle. The "hold" commands suppress

the transmission of the tracks to the UIP. The "report" command informs the UIP if azimuth

tracks, position tracks, or both are being forwarded.

The logging commands are "log azimuth tracks," "nolog azimuth tracks," "log position

tracks," "nolog position tracks," and "report logging status." The first two commands set the posi-

tion of an azimuth track logging switch, while the second two commands control a position track

logging switch. A switch in the log position causes tracks to be sent to the administrator for log-

ging. They are sent during the sixth stage of the acoustic azimuth measurement action cycle. The

last command causes the switch positions to be reported to the UIP.

The cueing commands are "cue," "nocue," and "report cueing status." These have meaning

only if a TV subsystem is logically interfaced to the tracker. The first two control the position of

a switch. When it is in the cue state, local position tracks are sent to the video sensor during the

sixth stage of the acoustic azimuth measurement action cycle. The last command causes the posi-

tion cueing switch to be reported to the UIP.

Parameter commands take the form of a parameter name and a numeric value or the string

"report parameters." Most commands cause the named parameter to be assigned the numeric

118

value. One command is used for each parameter. The "report parameters" command causes all

parameter values to be reported to the UIP.

As noted previously, the node locations that are required by the tracking algorithm are

obtained from the self-location algorithm. One message from the self-location algorithm contains

all node locations available to this node. As with the messages from the UIP, the node location

messages are obtained and processed outside of the measurement-triggered action cycles.

7.2.2. Other Functional Elements

The other functional elements in Figure 7.1 interact with the UIP in a manner similar to that

described in Section 7.2.1. The differences are primarily that the detailed responses to commands

may be function specific, different functions recognize different parameters and not all functions

recognize every command. For example "log" or "display" commands will cause different

quantities to be logged or sent back to the UIP for display, depending upon the function involved.

Another example is that all functions respond to the "report parameters" command, but the

parameters that are reported are different for different functions. The "enable," "disable," "reset,"

and "report control status" control commands have similar effects for all functions, with the

differences having to do with what data structures the functions must discard and reinitialize.

Following are brief descriptions of each of the functional elements in the system. Detailed

descriptions of command responses are omitted because of their great similarity with the tracking

function responses that have been described in Section 7.2.1.

The self-location algorithm provides the tracking algorithm with estimates of node loca-

tions. These locations include error covariances as well as node positions. The tracking algo-

rithm must obtain a location for every node from which it receives sensor data that it will use for

tracking purposes. Since the test bed does not include a self-location subsystem, the self-location

function simply provides internally stored default locations or values supplied to it through the

UIP. In the latter case, the self-location function forwards the locations to the tracking algorithm

when it is first enabled and when locations are changed by the arrival of messages from the UIP.

The node locations may also be sent to the UIP for display, to the administrator for logging,

and/or to the video sensor for use in cueing.

119

The azimuth measurement algorithm receives data from the SPS interface and provides lists

of azimuth measurements, including an estimated variance for each measurement, to the tracking

algorithm. The estimated variance is calculated from signal power and noise power estimates

provided by the SPS along with the azimuth measurement. The model for assigning variance

assumes that the variance is inversely proportional to signal-to-noise ratio and array size, down to

some minimum value.

The azimuth measurement algorithm also discards measurements to eliminate false detec-

tions. Detections are discarded for three reasons: if the sound pressure is too small, if the signal-

to-noise ratio is too small, and if there are too many detections. In this last case, the detections

passing the first two tests are ordered by signal-to-noise ratio and the list is truncated.

The SPS interface mediates all data flows between the SPS and the other functional ele-

ments of the SNC applications software and the UIP. It compensates for the limited flexibility of

the SPS/SNC interface and the SPS software. It performs format conversions, helps to synchro-

nize the SNC clock with the SPS, loads SPS parameters into the SPS, and starts and stops the

SPS.

The synchronization of the SNC clock with the satellite clock in the SPS subsystem for live

real-time experiments is an important operation in which the SPS interface plays an important

role. When the SPS interface receives a "report time" command it sends a "show time" command

to the SPS. This causes the SPS to report the satellite clock time back to the SPS interface. The

SPS interface sends both the SPS time and the SNC time back to the UIP where the offset

between them can be examined and commands sent to correct the SNC clock. This is explained

further in Section 7.5.

The broadcast input filter provides the tracking algorithm with messages from other nodes,

deleting messages which it should not receive. Its primary function is test-bed specific, not ge-

neric. The NRTS, Ethernet, and radio communication systems that support broadcast communi-

cations deliver every broadcast message to every node in the test bed. This includes messages

transmitted by the receiving node. The filter discards the messages that are self-generated by the

node and filters other messages to simulate partial communication connectivity between nodes.

The connectivity can be changed during experiments by sending a command from the UIP to the

filter. This mechanism has been used to experiment with communication and nodal failures in

the network.

120

The administrator provides services to other functional elements of each node and to the

user. These services include the logging of performance data on a floppy disk and nodal

identification. In general, the administrator is the "home" for services that do not warrant the

creation of a new functional element and do not conveniently fit anywhere else.

The clock controls the execution of tracking functions. It encapsulates and augments the

services provided by the NRTS clock and provides an interface for the UIP. The clock time can

be set, stopped, started, read, and waited upon. For live data experiments it is set at the start of

the experiment to coincide with satellite clock time obtained from the SPS. Otherwise, experi-

ment start time and the rate of the clock are arbitrary. The clocks are synchronized by interac-

tions with the UIP as discussed in Section 7.5. The overall procedure is to set the times and start

the clocks running, check the times, and apply offsets to individual nodes until network synchron-

ization is judged to be satisfactory.

The synchronization of nodes in the test bed is a tedious and somewhat manual process,

adequate for small networks with only rough synchronization requirements. The best way to

synchronize nodes in a DSN remains an open question. In some situations it may be a by-product

of the self-location process. This might be the case when self-location is based upon intemodal

distances obtained by measuring round-trip radio propagation times between nodes. Section 12

discusses self-location using intemodal distances.

7.3. Process Groups

Each major functional element of the SNC applications software is implemented as a group

of two or three cooperating processes. Each process has a main input message port and operates

on a message-by-message basis. Each message is read and acted upon before the next one is

read. The action is determined first by the message type contained in the message header and

second by the message contents. A process may also have auxiliary input ports. These are read as

part of activity triggered by the messages received on the main input port. Processes can have

any number of output ports.

The process ports discussed here are distinct from NRTS ports, the interprocess communi-

cation mechanism provided by the NRTS run time system (Section 3.3). NRTS ports are the

mechanism used to link process ports. When two process ports are linked, one NRTS port is the

121

TRACKNODE LOCATION

PARAMETER &

PFROCESS

PERFOMANCEPERFOMANC

DATA TO DATA TO
ADMINISTRATION UIP

TIME REQUESTSTRC
TO CLOCK PROCESS BROADCASTS

ASCII STRINGS
FROM UIP

OTHERUIP INTERFACE

RESPONSES RESPONSES
TO UIP T I

ASCII STRINGS
TO UIP

Figure 7.2. Tracking process group.

122

output of the "upstream" process and the other is the input of the "downstream" process. Many

process output ports may be linked to a single input port, but a single output port may be linked

to only one process input port. That is, there may be many writers, but only a single reader. Dev-

ices treat ports in the same way that processes treat ports. I/O devices can be conceptualized as

system-supplied processes. Broadcast communication links between nodes, and point-to-point

communication links between nodes and the UIP, are treated like device ports in the nodes where

they originate and terminate.

Each functional element is implemented by one or more processes that perform the func-

tional task and one additional process that serves as a UIP "impedance matcher." The former

processes communicate among each other and with display programs using standard messages,

which are binary data structures. UIP messages are ASCII strings and the UIP typically sends

one parameter value or command at a time, while the functional elements expect all parameters to

be communicated in one message. The UIP impedance-matching process performs the necessary

format conversions, groups the parameter messages, and generates the acknowledgements

required by the UIP.

The functional processes and the impedance matchers distinguish between display com-

mands and all other commands. This reflects an unimplemented plan to split the UIP into two

programs, one for each of these two different kinds of commands. It has no other significance.

In addition to the processes making up the process groups, an initialization process is

included in each SNC processor (Section 3.3). The initialization process in processor PI of each

SNC creates all the NRTS ports used to link the process ports.

More detailed descriptions are given below for the tracking and the broadcast process

groups. The former includes two, and the latter three processes. They are representative exam-

ples of process groups in the system. The tracking process group consists of one tracking algo-

rithm process and one tracking UIP interface process as illustrated in Figure 7.2. The broadcast

input filter process group consists of two major functional processes and one UIP interface pro-

cess as illustrated in Figure 7.3.

The main input port of the tracking algorithm process receives messages from processes

implementing the self-location algorithm, from the azimuth measurement algorithm, from the

123

TRACK
BROADCASTS

PARAMETERSROAD A CST

COMMANDS
FROM UIP

FILTERCLOCK PROCESS

CLOCK PROCESSES

FILTERED TRACK
BROADCASTS

ASCII STRINGS

BROADCAST INPUT RESPONSES TO UIP

ASCII STRINGS TO LIIPeF

Figure 7.3. Broadcast input filter process group.

124

broadcast input filter, and from the tracking UIP interface process. It has one auxiliary input port

that receives time messages from the clock process. It has seven output ports. One handles

broadcast messages, connecting the tracking algorithm process with the broadcast input filter in

other nodes via broadcast communications links. A second sends time and waiting commands to

the clock process. A third handles display command responses to the tracking UIP interface, and

a fourth handles all other command responses. A fifth handles performance data being sent to the

administrator, while a sixth handles sending the same data to the UIP for spooling and display.

The seventh port sends cueing data to the viAeo sensor if there is one.

The tracking UIP interface process has a main input port and two auxiliary input ports. The

main input port is connected to the UIP via a point-to-point communications link and receives the

UIP-originated ASCII string messages. The auxiliary input ports are linked to the command

response output ports of the tracking algorithm process. Messages are read from these ports when

responses are expected from the tracking process as a result of commands forwarded to it by the

UIP interface process. The UIP interface process has two output ports. One handles commands

sent to the main input port of the tracking algorithm process. The second output port is con-

nected to the UIP, via a point-to-point communications link, sending translated responses to the

UIP as ASCII strings.

The broadcast filter process group illustrated in Figure 7.3 consists of the broadcast input

reception process, the broadcast input filter process, and the UIP interface process.

The broadcast input reception process is a repeater: the need for it is explained below. The

main input port of the broadcast input filter process in the center of the figure receives broadcast

messages from the broadcast input reception process as well as commands from the UIP interface

process. It has one auxiliary input port that receives time messages from the clock. It has three

output ports. One handles broadcast messages, connecting the broadcast input filter process with

the tracking algorithm process. A second sends time requests to the clock process. The third

handles command responses to the broadcast input filter UIP interface process.

The main input port of the broadcast input reception process receives broadcast messages

from the tracking algorithm processes in other nodes via a broadcast communications link. It has

no auxiliary input ports and only one output port. The incoming messages are addressed to a spe-

cial pseudo device NRTS port which has the same name in each node. But the NRTS port that

125

feeds the main input port of the broadcast input filter process has a unique name in each node.

The purpose of the broadcast input reception process is simply to compensate for the name

change and forward all messages.

The broadcast input filter UIP interface process has a main input port and one auxiliary

input port. The main input port is connected to the UIP via a point-to-point communications link

and receives the UIP-originated ASCII string messages. The auxiliary input port is linked to the

command response output port of the broadcast input filter process. Messages are read from this

port only when responses are expected to commands translated and forwarded by the broadcast

input filter UIP interface process.

7.4. Messages

Most messages used in the SNC applications software are binary messages and are termed
"standard messages." Other message communication includes nonstandard binary communication

with the SPS, and ASCII communication with the UIP.

The number of different message types is large. There are over 50 standard binary message

types and many other message formats are used to interact with the UIP. It is not feasible or

necessary to describe all of these in detail. Instead, we describe the standard message format and

provide a few examples of how specific binary message types are specified using standard C data

structures. The use of standard C mechanisms for these complex messages very much simplified

their manipulation. The standard message structure is a minimal one developed for the test bed.

It is not proposed as a general solution for future DSN systems. Two specific message structures

are described as representative examples: acoustic azimuth measurement messages, and position

track messages. No further details are provided concerning the nonstandard SPS interface com-

munication or the ASCII communication with the UIP. However, several examples of the UIP

interaction messages will be found in Section 7.5.

Each standard binary message begins with a header. The header describes the message

type, its length, its time of origin, and its node of origin. The header information allows standard

format messages to be read, written, copied, and sorted by type, time of origin, and/or node of

origin without reference to the contents of the message. The C definition of the standard header

is

126

struct msg.hdr

unsigned short msgjtyp; /* message type */
unsigned short msgjlen; /* message length */
float msg_tim; /* message time */
unsigned short msg.nid; /* message origin */
};

The message type is a constant, unique for each distinct type of message. Macro definitions are

used to make them symbolic in the application code. The message length is given in bytes and

includes the message header. The message time is given in seconds of experiment time. It

specifies the time at which the contents of the message are valid. A default value is used when

time is not meaningful. The message origin is the integer part of a standard node identifier string,

e.g., I for "nl." (Nodes are assigned names nl, n2, n3, etc.) It specifies the node that originated

the message. Messages originating in a UIP program have an origin of 0.

Acoustic azimuth measurement messages are an example of a specific message type. Each

message contains a list of acoustic azimuth measurements. Each measurement consists of an

azimuth and an associated variance. A single message contains all the azimuth measurements for

one measurement time from a single SPS system.

The C definition of the acoustic azimuth measurement message, including the header, is

struct dtae-msg

struct msg.hdr dtae -hdr; /* standard message header */
unsigned short dtaescnt: /* number of measurements */
struct dtae-des dtae maz[MAXMES]; /* measurement descriptor */

struct dtae des {
float maz mean; /* measured azimuth */
float maz covr; /* measurement variance */
I;

The dtaecnt variable specifies the number of measurement descriptors included in the message.

It is bounded by an arbitrary value here symbolized by MAX MES. The azimuth is in radians

relative to north and is restricted to the range of ±t. The variance is given in square radians.

The second example is the structure for the position information messages, which are sent

by the tracking process to the broadcast input filter processes and to the administrator process. A

127

single message contains a list of total and common position track pairs for a single time. Each

pair is described by an identifier, a flag to indicate if the total and common tracks are equal, the

estimated positions and velocities of the total track, the uncertainties of those estimates, the

estimated positions and velocities based on the common track, and the uncertainties of those esti-

mates. The message time, assigned by the originating node, is the time for which all estimates

are valid.

The definition in C of the entire position information message data structure, including the

header, is

struct tgpi-msg
struct msg-hdr tgpi-hdr; /* message header */
unsigned short tgpi-cnt; /* number of targets */
struct tgpi-des tgpijinf[MAX_INF 1; /* information descriptor */
I;

where the primary information containing structure is defined by

struct tgpi.des (
struct net_id infid; /* track identifier */
unsigned short infequ; /* equality indicator */
struct dynstat totmeas; /* total track mean dynamic state */
struct dyn_covr totcovr, /* total dynamic state covariance */
struct dyn-stat comrnmean; /* common track mean dynamic state */
struct dyn..covr com..covr, /* common dynamic state covariance /
I;

The tgpi-cnt variable specifies the number of information descriptors included in the message,

which is bounded by an arbitrary value here symbolized by MAXINF.

The track identifier, inf id, is the track identifier described in Section 6.2.8 dealing with

track initiation and discussed again in Section 6.2.10 in the context of position track association.

The equality indicator, inf.equ, is used to indicate when the total and common tracks are equal.

Its primary use is to avoid duplicating some calculation when possible. Position and velocity

coordinates are state variables for the dynamic models used by the tracking algorithm. The

"dynstat" and "dyn-covr" terminology reflects that viewpoint. Variable names and data type

names begin with a leading short string which indicates a logical grouping. Such naming conven-

tions were used through the software to provide additional modularity and intelligibility to the

system.

128

The following definitions of the position track identifier, dynamic state, and dynamic

covariance data structures are included here for completeness:

struct net_id
i

unsigned short nd lnid; /* TI node 1 *
unsigned short nd2_id; 1* TI node 2 */
unsigned short ndl_id; /* TI azimuth track 2 */
unsigned short nd2_id; /* TI azimuth track 2 */
I;

struct dynstat

float dyn.pn; /* north position */
float dyn-pe; /* east position */
float dyn_vn; /* north velocity */
float dynve; /* east velocity */1;

struct dyn -covr

float dynpnpn; /* north position variance/
float dyn-pnpe; /* north/east position covariance
float dyn-pepe; /* east position variance * /
float dyn-pnvn; /* north position/velocity covariance */
float dynpevn; /* east position/north velocity covariance */
float dyn_vnvn; /* north velocity variance */
float dyn-pnve; /* north position/east velocity covariance */
float dynpeve; /* east position/velocity covariance */
float dyn vnve; /* north/east velocity covariance */
float dynveve; /* east velocity variance */
I;

The node identifiers are the integer parts of the relevant node names. Positions are in meters rela-

tive to an arbitrary reference point, and velocities are in meters per second. The position coordi-

nate (co) variances are given in square meters, and the velocity coordinate covariances are given

in squared meters per second.

7.5. Using the UIP to Run an Experiment

The UIP is the User Interface Program employed to operate the test bed and control experi-

ments. Several UIP programs, operating on different user workstations, can be operated simul-

taneously. The onus for avoiding destructive conflicts is on the users.

129

The use of a UIP to operate the network is described here from the viewpoint of an experi-

menter using the test bed. This is intended to provide a feel for the kinds of tasks that are

involved, to show examples of the ASCII messages used for communication between the UIP and

the nodes, and to emphasize the need to automate tasks. All commands except those beginning

with a ":" are messages to a process in a node.

Several commands are needed to initialize the UIP itself. The following is a typical list of

such commands for a single node experiment using node n5:

:netin ethernet
:open n5 ethernet 5
:spool spool
:log log

The first of these connects the UIP to the Ethernet to receive messages. The second associates

node n5 with an Ethernet address (5). The third establishes a spool file for holding display data

sent by the nodes to the UIP, and the fourth establishes a log file holding a copy of all ASCII

responses received from the nodes. Repeating the second line for different node numbers adds

additional connections. These commands are usually placed in a file called "opens" and the entire

file of commands is issued by typing

:file opens

The ability to issue a sequence of commands from a file is a general feature of the system.

As will become clear below, without this feature it would be virtually impossible to conduct an

experiment. The number of commands and the propensity of people to make errors conspire to

make this true. However, in what follows this encapsulation within command files is stripped off

to expose procedures in more functional detail than would be possible otherwise.

If the nodes are already turned on and operational, the user can proceed with an experiment

using only the UIP to control and operate the system. If not, some additional steps are required to

power up the nodes, load software, and start the system. If the nodes are not powered up, then

someone must visit each node and switch on the power. Software loading and system startup is

also usually done by an operator at the node. The software is loaded from floppy disks. If there

are serial lines connecting the nodes and the UIP processor they can also be used for software

loading and startup but this is usually slower and less convenient than using the floppy disks.

130

Using the Ethernet for downloading could improve the situation. But sequentially loading

software for 10 or more nodes might still be time consuming unless the data rate is very high.

The problem is compounded because reloading a processor is an all or nothing process. That is,

if any part of the code is changed it must all be reloaded. Facilities for remote loading, starting,

and modifying of nodal software should be improved for any future experimental system. Future

operational systems would also require different remote methods to load, start, and restart nodes.

This would extend to include remote testing of hardware and software.

If the nodal software was previously loaded, the nodes can be reinitialized using the reset

command. Each process must be individually reset. Thus, the command sequence

/n5/aduip reset
/n5/truip reset
/n5/amuip reset
/n5/bifuip reset
/n5/sluip reset
/n5/spsuip reset
/n5/clkuip reset

is required to reset the tracking software in a single node, node n5 in this case. The processes

"aduip",... ,"ckluip" are the UIP interface processes for the seven process groups that implement

administration, tracking, azimuth measurement, broadcast, self-location, SPS interface, and clock

command functions. The user and the UIP deal only with the UIP interface processes. Those

interface processes deal with other elements of the process group as required to accomplish a

task.

The form of the reset command is the same as that of all other node commands handled by

the UIP. An initial character string is followed by one or more additional strings terminated by a

final end-of-line character. The first string identifies a network process and the remaining strings

are a message directed to that process. The command destination string is in the form:

/<node-name>/<processname>

where the <process-name> is the UIP interface process name in a process group.

A single experiment may require that 50 or more commands be transmitted to a single node

to set up the experiment. These included commands to establish: what data will be logged on the

nodal disk systems; what data will be communicated back to the UIP for display; if the node will

131

cue a TV sensor, what parameter values should be used for tracking; what is the network com-

munication connectivity; what nodal locations are known to which nodes; what are the parame-

ters for the azimuth measurement process; and what parameters are to be used by the acoustic sig-

nal processing subsystem. Some examples of commands would be: "/n5/truip forward position

tracks" to forward position tracks from the tracker to the UIP for display; "/n5/truip log position

tracks" to cause the tracker to send position tracks to the administration process for logging on

the node disk; and "/n5/truip azdiff 5.0" to set one of the more than 25 parameters that are recog-

nized by the tracker. The number of commands multiplies with the number of nodes in the

experiment.

The test bed can be operated in different modes. The mode is determined by commands

sent to the "spsuip" processes in the nodes. The options are to employ the SPS in real time with

time stamps provided from the satellite clock in the SPS, to use the SPS in real time but process

previously recorded acoustic data read from the SPS digital tape system, or to not use the SPS at

all and to conduct a real-time experiment using azimuth measurement data stored on the nodal

floppy disk system. Except during real-time operation with the satellite clock it is possible to

operate the system at a fixed fraction of real time.

The most common usage mode has been to operate without the physical SPS systems and to

employ measurement data prestored on floppy disks. This is convenient for controlled experi-

mentation with algorithms and for system tuning experiments that require repeatability of data

inputs. A typical command sequence required to operate in this mode is:

/nS/spsuip spsover 1.5
/n5/spsuip config floppy
/n5/spsuip ex-start 0.0
/n5/spsuip exstop 300.0
/nS/spsuip part-disk 0
/n5/spsuip part-inx I

The first parameter, "sps over", is a processing slack time. If data read from the SPS, in this case

the floppy disk, have a time stamp that is more than the specified number of seconds late relative

to the SNC clock, the data will be discarded. The second parameter, "config", specifies that the

SPS is to be simulated, i.e., data are to read from the floppy. The third parameter, "ex start", is

the experiment start time in seconds after midnight. Any data on the floppy disk before the start

132

time are skipped. The fourth parameter, "exstop", is the experiment stop time in seconds after

midnight. Data after the stop time are also ignored. The fifth parameter, "partjdsk", is the disk

drive to be used (0 or 1). The sixth parameter, "part-inx", is the disk partition index to be read.

From the user's viewpoint, a floppy disk partition is equivalent to a file.

All experiments with the test bed are driven by the real-time clocks in the SNCs. These are

set at the start of each experiment and run free for the duration. Fortunately, the required degree

of synchrony between nodes is only on the order of a few tenths of a second and the duration of

typical experiments ranges from only a few hundred seconds to a few hours. Loss of synchrony

has not been a serious problem and more sophisticated network synchronization mechanisms

have not been required. An operational system or experimental system designed for long dura-

tion experiments would require additional capabilities to maintain synchrony.

Once all other system parameters are set, it remains to set the clocks and start the experi-

ment. The clocks are set by commands of the form
/n5/clkuip set time 0.0 1.0

where the first number is the time and the second number specifies the rate at which it should tick

after it is started. The details after this depend upon whether the nodes will be synchronized to

satellite clocks in the 3PS subsystems or not.

The startup procedure is simplest when the experiment does not need to be synchronized to

the SPS satellite clocks. The procedure in this case is to first start all the other processes and

then, after a pause, start the clocks. Thus, the command sequence for a two-node experiment

would be:

/n5/aduip enable
/n5/truip enable
/n5/bifuip enable
/n5/sluip enable
/n5/amuip enable
/n5/spsuip enable
/n6/aduip enable
/n6/truip enable
/n6/bifuip enable
/n6/sluip enable
/n6/amuip enable
/n6/spsuip enable

133

followed by a pause and

/n5/clkuip enable
/n6/clkuip enable

The pause is required to clear all message traffic before the clock enable messages are sent.

Clock enable messages, which set the clocks ticking, are sent as nearly simultaneously as possi-

ble. The degree to which the network is synchronized is determined by the simultaneity of the

clock enable messages. The user can verify synchronization by sending "report params" mes-

sages in quick succession to each of the clkuip processes.

The synchronization process is more tedious when the network must be synchronized with

the satellite clocks. Also, due to some internal peculiarities of the SPS subsystems, synchroniza-

tion is done before other processes are enabled. The satellite clock in one node is usually selected

as the network master. The procedure is to enable all of the SNC clocks, synchronize the master

clock with the SNC clock in the same node, and then synchronize all the other SNC clocks with

the first one, one at a time. Since all satellite clocks are synchronized with each other it would

also be possible, for those nodes containing satellite clocks, to synchronize the SNC clocks with

the satellite clocks and then synchronize other nodes.

Suppose node n5 contains the master clock and "clkuip enable" commands have been sent

to start the SNC clocks. The synchronization of the master clock with the first SNC clock is done

as follows. The command "/n5/spsuip report time" will provide the user with satellite and the

SNC clock times for node 5. Based upon the difference between those times the user will issue

an "offset time" command to adjust the SNC clock. This is done repeatedly to check and adjust

synchrony until it is deemed satisfactory.

Synchronization of other nodes then proceeds one at a time. For example, suppose node 6

is to be synchronized with node 5. The command sequence

/n5/clkuip report params
/n6/clkuip report params
/n5/clkuip report params

causes the SNC time to be reported twice from node 5 and once from node 6. Based upon the

differences in reported times, the user will issue an appropriate "offset time" command to node 6

to bring it into synchrony. This sequence is repeated until the user is satisfied and is then

134

repeated for all other nodes. The peculiar form of this interaction, requiring two reports from one

node, is the result of a limitation in the communication system, which should (but does not)

attach node identifiers to messages sent to the UIP. (Note that, as described in Section 7.2.4,

standard binary messages do contain such information but are not used by the UIP. The lack of a

message source identifier at the UIP level is a limitation resulting directly from as yet unexecuted

plans to replace the UIP and adopt standard binary messages for all interprocess communication.)

Once the network is synchronized, commands are sent to enable all the other processes and start

the actual experiment.

The above procedures for network synchronization are at best tolerable and usable for lim-

ited experimentation with a small network. The details have been given to make this point per-

fectly clear, to emphasize that distributed network synchronization is important and that better

methods are needed.

The normal way to complete an experiment is to reset all the processes in preparation for

the next experiment. These reset commands also assure the validity of data logged on nodal

disks.

1351,

8. COMMUNICATION SUBSYSTEM

8.1. Introduction

Figure 8.1 shows the primary communication elements of the test bed. These are: (1) Eth-

ernets, (2) microwave radios to link the Ethemets, and (3) low speed serial lines linking software

development computers to test-bed nodes. The Ethemets and Microwave radios provide the pri-

mary support for distributed tracking experiments. The serial links, augmented by human opera-

tors at individual nodes, are used for convenience during system startup. Serial links are available

only to nodes located within the main DSN laboratory area.

The Ethernets and Microwave radios are used to completely link all nodes into a single vir-

tual Ethernet. This logical Ethernet supports point-to-point messages between any pair of nodes

and broadcast messages from any node to all others. These communication services, point-to-

point and broadcast, are the essential communication services that are used for tracking and for

controlling and monitoring experiments.

MICROWAVE
RADIOS

ETHERNETS TEST-BED SERIAL
NODES LINES

DEVELOPMENT
AND

QCONTROL
(4 WORKSTATION

Figure 8. 1. Test-bed communication subsystems.

137
' ' ' ' I IIa

The functions of the serial lines were discussed in Section 7.5. It is important to re-

emphasize that neither special serial lines nor operators located at nodes would be used for rou-

tine operation of larger scale experimental systems or an operational system. Such systems should

be designed to use the primary DSN communication system to control remote node startup and

test functions that are now accomplished using serial lines and human operators. This would not

result in significant additional communication but would require specialized messages and node

hardware. Among other things, it would require a design that provides for nodes to be deployed

in a low-power state, capable of receiving and acting upon startup messages. This standby condi-

tion would be implemented with minimum complexity and maximum reliability.

Neither Ethernets nor radio links were part of the test bed in its early stages. The initial

experiments utilized 9600-baud serial lines in a star configuration as communication links. The

serial lines in the test bed are remnants of that initial star configuration. Although the lines no

longer provide primary point-to-point and broadcast services their initial use has resulted in some

communication system peculiarities, notably the use of ASCII rather than binary messages for

communication between the nodes and the experiment control computer. This has persisted

through the final implementation.

Sections 8.2 and 8.3 describe the communication hardware and the Ethernet and radio com-

munication software. Section 8.4 briefly covers another topic; the development of an

experimental digital radio system.

8.2. Communication Hardware

The primary communication medium for nodes located within the main DSN laboratory is

an Ethernet. In addition to the nodes, the hosts on the network include a VAX I 1V780 computer

and two UNIX workstations for software development and experiment control. Communication ",

between the laboratory and remotely deployed mobile nodes is by means of microwave radios.

The remote nodes are installed in vehicles. Each vehicle contains two or more SNC systems and

a short local Ethernet. The laboratory-based Ethernet and all of the remote Ethernets are physi-

cally separate. One of the SNC systems on the laboratory Ethernet and one on each of the remote

Ethernets serve as communication gateway nodes. The gateways transmit messages between the

Ethemets and the radio system in such a way that all elements, those in the laboratory and those

at remote sites, appear to be on a single logical Ethernet.

138

There are no restrictions to the type or number of hosts that can be attached to any of the

Ethemets. Thus, one of the UNIX workstations can be physically moved to one of the remote

sites and used from that location to control experiments in the same way that it would be used if

located in the main DSN laboratory. TV subsystems can be attached to any of the Ethemets. The

usual configuration is to attach one TV subsystem to the laboratory Ethernet and one to the Ether-

net in a mobile unit. All mobile systems normally contain one SNC that is used for tracking and

also serves as an interface to the acoustic subsystems.

The gateway SNC systems that interconnect the Ethernets are skeletal systems containing

only a single processor board. They have hardware interfaces to microwave radio equipment and

to the local Ethernet. Gateway nodes reformat messages received on the Ethernet and retransmit

them to other parts of the test bed using the microwave radio. They also retransmit messages

received from the microwave radio to the other SNCs attached to the Ethernet. The gateways

utilize the standard NRTS operating system but, to avoid computational overload, do not run any

of the tracking or video software. The gateway SNCs are dedicated to the communication task.

The gateway and tracking functions have been kept in separate SNCs to ensure the availability of

adequate resources.

All Ethernet hardware is standard commercial equipment. The interface between the Ether-

net and the SNC multibus is an Execelan Ethernet Interface Board. This board interrupts the

NRTS system whenever it has a message to deliver. Whenever NRTS has a message to send it

passes parameters to the interface to accomplish the transmission. The interface board imple-

ments basic Ethernet protocols and relieves some load from the SNC processor. Specifically, in

all non-gateway nodes, only messages requested by the attached SNC are passed on to NRTS by

the interface. These are the point-to-point messages addressed to the specific SNC and broadcast

messages that are received by all the SNCs.

The microwave radios that interconnect sites are Loral Terracom TCM-6 series radios

operating in the 7.125 to 8.4-GHz band with a TI carrier and a 1.544-Mb/s bipolar data stream.

Radios are installed in three mobile units and on the roof of the main DSN laboratory.

There are two levels to the interface between the SNC and the microwave radio. The first

level is the multibus board, which is the interface seen by NRTS. This board, furnished by SBE,

Inc. provides four RS-449 56/64-kbits synchronous simplex communication channels. Three of

139

Ti MUX GATEWAY NODE

0/F CHI
TX CH2
ID CH3 -i I
0/F CH4

D CH2 MICROWAVE /CH
D/F CH3 ~ RADIO T H

0/F CH4 RING NETD H

VAXE NODE

SATEATIO NODE

D C 1

TX CHn TRANSMIT ON CHANNEL n
0/F CHn DROP AND FORWARD CHANNEL n
0 C~n DROP BUT DO NOT FORWARD CHANNEL n

Figure 8.2. Microwave ring used to interconnect test-bed etherners.

140

these are for output from NRTS, and one for input. This interface board was customized using

ROM resident software to minimize the communication load on NRTS. All communication

between NRTS and the board is in terms of messages, whereas characters are more natural for the

basic synchronous channel. There is no provision for error checking or retransmission of dam-

aged or lost messages. The interface board attaches to a DS- 1 Format digital time division multi-

plexor that can multiplex up to 24 channels onto a single TI carrier. This equipment, manufac-

tured by Tau-tron Inc., is used to multiplex the four 56/64-kbit channels onto the TI carrier. Only

4 of the available 24 channels are utilized.

This hardware is used to form a ring of up to four sites interconnected by microwave radios

as illustrated in Figure 8.2. Each site contains a radio, a multiplexor with an interface board, a

gateway, and a local Ethernet. The four sites consists of three mobile systems and the laboratory

system. The number of sites can be reduced to three or two and need not include the laboratory

site. The radio hardware and multiplexor are set up so that the transmission from any site is

received by all three of the other sites. Each site has a separate receive channel for each of the

other sites. The system routes a transmission from any site around the ring to the other three sites

that receive it on a D or D/F channel, depending upon whether the site is the last of the three or

not. The interface board operates in a so-called one-way drop and insert mode. For two of its

receiving channels it forwards the message on the same channel. Messages on the third receiving

channel are dropped and not forwarded, because if forwarded they would be sent to the node

which originated them.

The radio link between any pair of nodes is unidirectional. Each of the up-to-four sites on

the radio ring contains a single radio transmitter, a receiver, a transmit antenna, and a receive

antenna. This is different from the way this equipment is normally employed for multihop com-

munication. In standard applications each direct link between a pair of nodes is bidirectional,

requiring additional receivers, transmitters, and antennas. By arranging the system in a ring and

utilizing unidirectional links, we were able to reduce the amount of equipment by almost a factor

of two.

The communication hardware can be scaled up to support more nodes, to a limit of about

20. This would require acquisition of radios and interfaces for each node and some upgrading of

141

the existing interfaces to handle the additional channels. A small amount of additional NRTS

software would also be required to handle the additional channels. However, the NRTS message

processing load would increase substantially and probably limit the system to substantially

smaller sizes, on the order of 10 nodes or less. This processing load limitation is not fundamental

but is due to the details of our specific hardware and software implementation.

8.3. Distributed Surveillance Communication Software

The nodal operating system, NRTS, and its most basic I/O and communication services are

described in Section 3.3. That section describes the basic NRTS interprocess message passing

system based upon "ports" that are functionally similar to UNIX ports. As described in Section

3.3 the operating system provides Point-To-Point (PTP) and broadcast message types, which are

the internodal communication mechanisms used throughout. The present section adds to that

description with emphasis upon aspects related specifically to providing internodal communica-

tion with Ethemets and radios. In addition, special gateway software is described. That software

uses the NRTS features and software drivers to actually accomplish the interconnection of the

network. A simple user-level program in gateway nodes helps to identify possible problems with

the overall communication system.

One requirement for the communication software was that user software should run without

modification on any node, regardless of the communication media used to transmit messages

between nodes. This requires that the communication system know about the physical communi-

cation media and how to reach any node from any other node. These multiple-media, multiple-

network routing problems are very difficult in general. Fortunately, it has been possible to devise

specialized solutions specifically for the test bed.

Not all nodes contain the same hardware components and devices. Some, but not all, SNC

systems contain radio interfaces, Signal Processing Subsystem (SPS) interfaces, special TV sub-

system boards, and multiple MC68000 processor boards. To avoid the confusion of many dif-

ferent, node-specific operating system configurations, NRTS performs a complete system genera-

tion at load time. All possible devices are checked to ascertain if they are present and functioning

correctly. Bus errors generated by reference to nonexistent I/O devices are intercepted, avoiding

a system crash when hardware is missing or malfunctioning. Missing devices are reported and the

142

1/O devices that are present are assigned an appropriate interrupt level and I/O transfer vectors are

set up. I/O queues and routines to monitor the queues are established for each existing I/O dev-

ice. Finally NRTS transfers control to the user level software.

The second, and much more difficult general problem, is how to route messages to their

intended destinations. Two simple, but test-bed specific, message handling rules were pro-

grammed into the NRTS message system to accomplish this. These rules suffice because there

are only two transmission media, Ethemets and microwave radios, and because an additional

configuration restriction is enforced. The configuration restriction is that no more than one of the

SNCs on an Ethernet can also be attached to a microwave radio. The reason for this restriction

will be made clear shortly.

The first rule is that a message received on the Ethernet is retransmitted by the radio and

vice versa. The second rule is that messages originating in a node are transmitted over all

attached communication media: the Ethernet, the radio, or both. These rules are applied uni-

formly to both P1? and broadcast messages without checking the message type. No attempt is

made to ascertain how to reach any particular node. As a result some of the transmissions of PTP

messages may be unnecessary, but this approach results in a trivially simple system which is ade-

quate for the existing test bed. The constraint that no single Ethernet have more than one

attached radio avoids infinite message retransmissions. Without this constraint a message sent

from one radio would appear at another on the same Ethernet and the system would become

unstable.

The software interfaces between NRTS and the radio and between NRTS and the Ethernet

are important because they determine the computational load placed upon NRTS for message

handling. This is particularly important for gateway nodes containing both both radio and Ether-

net interfaces.

The interface to the radio, consisting of one input and three outputs, was designed to be as

simple as possible. The hardware interrupts the NRTS operating system in three cases. There is

an initial interrupt to signal NRTS that the interface is initialized. Thereafter, NRTS receives an

interrupt whenever a message is received or when a requested transmit is finished. The interface

board provides ten 1024-word buffers in each direction for each of the four channels. This inter-

nal buffering provides a message at a time interface with NRTS, although the output of the board

is a character at a time.

143

Communication between NRTS and the radio interface board is through a separate four-

item data structure for each channel. The items are a channel status byte, a transmit/receive flag,

a byte count, and a pointer to a NRTS data buffer. The interface board continuously polls the

four status bytes. When a zero value is noted and the flag is TRANSMIT, the interface board

proceeds to DMA the data into one of the on-board buffers. If no on-board buffer is available, the

request is honored when a buffer becomes free. As soon as the data are moved, the appropriate

status byte is set and an interrupt to NRTS is generated. When the interface board detects a zero

status byte and the transmit/receive flag is set to RECEIVE, a message will be copied into the

buffer provided by NRTS if a message is waiting. Otherwise, the transfer will take place as soon

as one is available. The number of bytes in the message is entered into the count field, the status

bits are set, and an interrupt to NRTS is generated.

The software interface to the Ethernet interface board is a conceptually similar, message at

a time, interface although there is a single interface channel rather than four. The interface board

allows the host computer to specify which incoming messages should be delivered to the host.

All other messages on the Ethernet are discarded without alerting the host. NRTS normally uses

this to minimize the message handling load on the SNC processors. But gateway nodes relay

messages to other nodes and therefore must handle all of the Ethernet messages. This "promiscu-

ous" mode is provided by the interface board but it requires that a gateway node handle a very

large message volume. This load can become large enough to interfere with tracking functions.

Therefore, it was decided to perform the gateway functions in separate nodes and to include radio

software only in the nodes containing microwave radios. Because nodes other than gateway

nodes have no gateway functions, their Ethernet interface boards can be set to transfer only a sub-

set of all of the Ethernet messages to NRTS. The messages passed on to NRTS are broadcast

messages and PTP messages addressed specifically to the node. The separate gateway nodes, by

handling all message retransmission, leave more resources available for tracking and TV

functions in the nodes that perform those functions. These are the only operating system differ-

ences between gateway and non-gateway nodes.

Since gateway nodes do not execute tracking or TV software there are some spare resources

available that can be used for simple system monitoring. A user level program is run which

144

prints out the traffic it has encountered every 2 s. This program will respond to a query from a

UIP and provide traffic statistics to the user of the UIP. This feature allow the experimenter to

ascertain if the gateway is running correctly.

8.4. Communication Network Technology Research

The initial DSN plan included integration of experimental packet radios into the DSN test

bed to provide the internodal communication services that are now supplied by Ethernets and

commercial microwave radios. The objective was to utilize advance radios being developed by

the Communication Network Technology (CNT) project sponsored by DARPA. These radios

were designed to experiment with and demonstrate many advanced features and capabilities [251.

Only a small number of the features were essential for the DSN application, but it was clear that

the DSN test bed could provide a basis for experimentation with the radios.

The CNT radio is a pseudonoise spread-spectrum packet radio. The spreading code is

changed for each bit in each message. The code for the first bit of each message can also be

changed on a message-by-message basis. The primary data rates for the radios are 90.3-kb/s and

1.45-Mb/s. In both cases the first several bits of the message are synchronization and header bits

transmitted at the 90.3-kb/s rate. The header indicates whether the main part of the message is at

the 1.45-Mb/s rate so the receiver can switch to the higher rate when appropriate. At each of the

two basic signaling rates the radio provides for several levels of error checking and correction

encoding, resulting in several usable lower communication rates.

Another feature is that the radio can very precisely time stamp incoming messages and con-

trol the time of outgoing messages. Pairs of radios can use this capability to measure the distance

between the two radios and to determine their clock offsets. Measurements from many node

pairs can be used to determine the relative positions of the nodes and synchronize clocks. This is

discussed more fully in Section 12.

These features, basic broadcasts and message timing, are the radio characteristics of pri-

mary interest for the DSN application. However, the radios incorporated many technical innova-

tions to implement these capabilities and have many other special features. For example the high

data rate is higher than that provided by any other packet radio. Adaptive notch filters are

145

included in the radio front end to eliminate narrowband jammers. Three different options are pro-

vided to measure message arrival time. It can be measured without multipath corrections or,

using two different methods of multipath processing, small direct-path precursors can be detected

in the presence of strong multipath signals. Transmit power and a number of receiver thresholds

are adjustable. A special mode is provided in which the body of a message is transmitted in a

very high-gain low-data-rate integrating mode although the synchronization bits and header are

transmitted at the 90.3-kb/s rate. The radio also can be used to communicate entirely in the very

high-gain low-data-rate mode, but this requires precise synchronization of the radios before enter-

ing this mode. How to optimally utilize all of these capabilities remains a major resource alloca-

tion problem. The DSN objectives were to use a small subset of the options and to provide an

environment in which the radio could be evaluated and experimented with to address the resource

allocation questions.

While the CNT radio development was carried on as an independent project, part of the

DSN effort was to develop a radio interface for the DSN Standard Nodal Computers. The inter-

face, which was designed to support all of the features provided by the radio, was implemented

on a single multibus board that can be accommodated in any DSN SNC system.

Figure 8.3 illustrates the radio channel structure supported by the interface board. The radio

requires a new set of commands approximately every 10 ms. The host SNC computer is respon-

sible for generating these commands. The host can initiate at most one transmission in a single

10-ms period. The transmission start time can be specified as any one of N possible start times

within the cycle. The increment between possible start times is 90 gs. The possible start times

must be restricted to provide a few milliseconds of free time at the end of the cycle during which

the radio performs essential housekeeping functions. A transmission can extend over any number

of cycles and, although only one transmission can be initiated each cycle, one or more messages

can be received.

A DSN radio communication system design was developed around this basic 10-ms cycle

structure [26,27]. The design organized the slots into groups of a few hundred, with subsets allo-

cated to provide different communication services. Each subset could be used to provide a

known level of service without interference from the traffic in other subsets. The design is flexi-

ble enough to accommodate experimental protocols that might exploit advanced radio features,

while allowing for much simplified protocols for initial use. One such simplified broadcast

146

H - SLOT GROUP I
(100 to 500 Slots)

S 1 SLOTS,,L J -l 0 L•••• II i I I,

ALLOWED START TIMES
(N Allowed)

-'t I-90/1s
1111 .I. III

A = -10 ms

Figure 8.3. Organization of radio channel into slots with discrete packet start times within each slot.

protocol was designed and implemented for NRTS. The implementation utilizes the same

pseudo-noise seed for each message, provides no automatic retransmission when transmissions

are preempted by incoming messages, and randomly selects the transmission times within the

10-ms slots. This protocol was used in the CNT laboratory to perform preliminary experiments

with broadcast communications between two CNT radios.

While no fundamental problems precluded integration of the radios into the test bed, it was

clear that the radios, the multibus interface boards, and the NRTS operating system required sub-

stantial additional development if the radios were to be used extensively for DSN experimenta-

tion. At this point the projects proceeded separately, and the DSN project procured "off-the-

shelf' microwave radios to provide radio communication for the test bed.

147// i/

9. REAL-TIME TEST-BED EXPERIMENTS

9.1. Introduction

The Lincoln Laboratory DSN research effort culminated in a series of multisensor distrib-

uted tracking experiments in the Summer of 1986114]. These final real-time experiments with

helicopters are described in Section 9.1. Section 9.2 reviews system test and integration experi-

ments leading up to the final real-time experiments. Other experiments and experimental pro-

cedures are described elsewhere. These include off-line acoustic array processing experiments

(Section 4), TV cueing experiments (Section 5), real-time experiments with prerecorded data in

(Section 6), and real-time tracking experiments with simulated data (Section 10).

9.2. Multisensor Distributed Tracking Experiments

A major goal of the DSN project at Lincoln Laboratory was the demonstration of real-time

distributed aircraft tracking based upon the independent cooperative process paradigm, and using

a combination of acoustic and TV sensors. This was accomplished, thereby successfully demon-

strating the feasibility of distributed mixed-sensor surveillance and tracking systems.

The experimental test-bed elements used for final experiments and demonstrations are

shown in Figure 9.1 They included five tracking nodes, four acoustic subsystems, and two TV

subsystems, all interconnected by Ethemets and microwave radio links. The Ethemets and radios

provided both broadcast and point-to-point communications for the demonstrations. This was

done using special gateway nodes that created a single logical Ethernet as described in Section 8.

Three acoustic subsystems, a TV subsystem, and user workstations were installed on one

Ethernet at the main Lincoln Laboratory building complex. These sensor subsystems and the

user workstations were located within 500 m of each other. The other sensors, an acoustic sub-

system and a TV subsystem, were located approximately 3 km distant at the Lincoln Flight Facil-

ity and at a Raytheon site on the other side of Hanscom Field.

Figure 9.2 shows the geographic deployment of sensor sites as well as some additional

information about the demonstration scenario. A UH-! helicopter was flown through the

deployed sensor field as a test target. The demonstration concept called for the helicopter to be

acquired and placed in track using microphone data. The initial tracks would then be used to cue

149

I RELAY

RAYTHEON RELAY J-BUILDING L-BUILDING
SITEV

&TV SUBSYSTEM

ACOUSTIC SUBSYSTEM IERNE

* TRACKING NODE
FLIGHT7 RADIO AND MUX FACILITY

[RADIO/ETHERNET GATEWAY
H IL L

WORKS TA TION FLIGHT PATH

Figure 9.1. Experimental test bed for DSN demonstrations.

HANSCOM ' .. O p , /

ERROR 0 rv SITES t2) N

ELLIPSES 0 ACOUSTIC
ARRA YS (4)

Figure 9.2. Demonstration scenario for distributed mixed sensor tracking.

150

the TV subsystems which would acquire the target and provide additional directional measure-

ments to be integrated with acoustic measurements. Error ellipses, which are produced by the

tracking algorithms, are indicated in the figure. Initially, the axes of the error ellipses are several

hundred meters long. As more data are acquired, especially when the TV data are added, the

error dimensions are substantially reduced to approximately 100 to 200 m. The expected large

decrease in the error ellipses when TV measurements are added is largely because the TV mea-

surements are accurate to a fraction of a degree whereas the acoustic measurements are accurate

to only within a few degrees. Later in the track the error ellipses begin to increase again as the

target leaves the sensor field and new measurements are no longer provided.

Figure 9.3 shows the track for one pass of the UH- I helicopter during final demonstrations.

Several similar passes were made, some from north to south and others from south to north, all

with similar results. The choice of flight paths was limited by constraints imposed by air traffic

control personnel at the Hanscom Field tower. A comparison of Figures 9.2 and 9.3 shows that

the qualitative performance of the distributed system was as expected. The track was established

using data from the acoustic sensors and was subsequently improved by jointly tracking with

acoustic sensors and TV sensors.

The display of Figure 9.3 is an example of the real-time display provided for users during

demonstration runs. Track points are added to the display in real time during the experiment.

Each point shows position, direction, and an error ellipse. A finite history, typically 1 or 2 min,

of each track is retained on the screen. Track data for the display are obtained via a point-to-point

communication link between the user workstation and any of the tracking nodes. Although these

data are obtained from a single node. they represent the overall track obtained using all sensors.

This results from the nature of the distributed tracking algorithms and the fact that the test bed

was operated with all nodes directly interconnected by broadcast communication links. Larger

DSN systems, with many more nodes and less communication connectivity, would require addi-

tional multisite data collection and integration. Methods to accomplish this, based upon track

combining algorithms that are included in the distributed tracking algorithms, have been investi-

gated as described in Section 13, but have not been implemented in the test bed.

Additional sensor specific displays were developed for the acoustic and TV subsystems.

The acoustic displays are azimuth vs time histories. Data for these displays are obtained using

151// I

Figure 9.3. Real-time, helicopter track display, obtined by, tracking svitu bothu acoustic andl T-' nodes.

153// &

point-to-point communication links from any of the acoustic sites to a workstation where the

display software is located.

The TV subsystem displays are shown in Figure 9.4. That figure shows the screen of a TV

monitor attached to our J-Building TV subsystem. The display shows information from both the

local TV on the roof of J-Building and the remote TV. The primary image is the last image from

the local TV. If a target was detected in the image, then a box is superimposed upon the screen to

indicate the detection ISee box (a) in the figure]. In addition, if the remote site detected a target,

a small, 2-cm image around the detection is saved, transmitted across the network, and superim-

posed upon the local TV screen. This image is the binary image labeled (b) in the figure.

(b) -

::::: :::::::::::::::: :: .. : :

Figure 9.4. Local IT1 displart witht remote IT im~age, ene rlar'.

155

.. , , __II I I I)

The 2-cm image from the remote camera is usually large enough to contain the target image

because, as discussed previously in Section 5, the zoom control attempts to keep the target size

between 1 and 1.5 cm. Although the image is binary, test-aircraft silhouettes have been found to

be quite recognizable. The image is transmitted to the user in a 512-byte point-to-point message.

The small image patch is superimposed upon the user TV monitor in the same position it had in

the image of the remote camera. This window into the remote TV site is another example of the

value of multihop point-to-point communications in a DSN.

9.3. System Integration and Checkout Tests

Final demonstrations of distributed multisensor tracking were preceded by a series of real-

time system integration and checkout experiments which were carried out over a period of several

months. Initial experiments involved the testing of the acoustic signal processing and TV signal

processing software at single sensor sites. Subsequent experiments involved up to three acoustic

sites and one TV site locally interconnected by an Ethernet cable. The last series of experiments

involved integrating the microwave radio systems and expanding the experimental baseline to 3

km as well as adding other acoustic and TV site sites. Experiments utilized targets of opportunity

as well as controlled experimental aircraft. Experiments with controlled targets utilized north-

south and east-west target paths, depending upon wind conditions that determined which Han-

scom runway was in use.

Experiments with controlled targets were performed on the average of one every two weeks

for a period of several months. Many additional system integration tests were performed using

targets of opportunity.

Algorithms, experimental procedures, and hardware reliability were all significantly

improved during this integration and test period preceding final DSN demonstrations.

156

10. ALGORITHM AND SOFTWARE DEVELOPMENT TOOLS

10.1. Introduction

Several techniques and tools were used to aid the development, testing, and debugging of

algorithms and software for the test bed. These aids fall into two classes. One emphasizes con-

trolled experimentation with algorithms, and the other emphasizes general software development

tools. Sections 10.2 through 10.6 deal with controlled experimentation techniques and tools. Sec-

tion 10.7 provides information about software development tools.

The value of controlled experimentation as an aid to the development of a complex system

was recognized early and several different forms of controlled experiments were used exten-

sively. This experimentation made use of controlled data sources and several different forms of

system simulation. The general technique was to use the same data set repeatedly to investigate

the effects of software or algorithm changes and to use different data sets to stress different parts

of the system.

Two types of controlled data sources were used as development aids. These are simulated

data and prerecorded sensor data. For simulated data the experimenter completely controls the

true situation, the number of targets, target trajectories, noise sources, etc., and can investigate

algorithm behavior with absolute knowledge of the underlying truth. Section 10.2 describes an

acoustic data simulator for the output of the signal processing subsystem. Section 10.5 describes

a data simulator for TV-based azimuth measurements. These simulators give the system

developer the significant advantage of knowing absolute truth and the ability to precisely repeat

or modify experiments.

The other type of c-nt--lled data is recorded during live experiments with controlled air-

craft. These data are more realistic than simulated data but knowledge of the truth is not as com-

plete. For example, it is not practical to have complete knowledge of ground vehicles, other air-

craft, and other noise sources in the experimental area. In addition, knowledge of the true track

for the controlled aircraft may be precise or approximate, depending upon the details of the

experiment.

Several other types of simulations were use to aid algorithm development. These include: a

test-bed simulation environment that is described in Section 10.3, the use of the test bed as a

simulation environment as described in Sections 10.4 and 10.5, and a symbolic tracking algo-

rithm simulator that is discussed in Section 10.6.

157

The less extensive coverage of software tools in Section 10.7 reflects the fact that only

minimal tools were used, although more powerful tools would have helped considerably. There

was more emphasis upon controlled experimentation than upon software development tools for

distributed software because it appeared to be the best utilization of available resources. Substan-

tially better software development tools would have required a more capable distributed operat-

ing system. Developing such an operating system, along with more advanced tools, was the

focus of more general DSN research at other organizations[28]. It was also clear that commercial

workstation operating systems and local area network technology would quickly mature and pro-

vide much of what we would require in the future.

10.2. Acoustic Data Simulator

Two different kinds of acoustic data simulation were used in the development and testing of

algorithms for the test bed. Time series simulations of individual microphones were used to test

signal processing algorithms. Simulations of detections and direction estimates produced by the

signal processing system (SPS) were used to test tracking algorithms. The latter were used more

extensively and were a more essential part of the system development.

The fidelity and computational cost of simulation are important factors related to the use of

simulators. When is a simulator good enough? Does it capture the essential features without

paying too high a price in development cost or computational load? For example, the SPS output

could be generated by simulating the acoustic time series inputs and applying the SPS algorithms

to those time series. The resulting computational load would be considerable; so much so that it

might become impractical to compute enough simulated data to effectly test tracking algorithms.

Alternatively, a simple statistical model might be formulated for the SPS output simulation at far

less computational cost. Based upon computational considerations and the recognition that abso-

lute fidelity was not required, a simple statistical model was in fact used as the basis for simulat-

ing the SPS output.

A secondary advantage of the decision to model the SPS output without modeling the input

waveforms was that the waveform simulation used for testing signal processing algorithms could

be simple. The waveforms were modeled as plane wave signals plus additive white noise. Sig-

nals were assumed to be identical at all sensors in an array except for the plane wave delay.

158

Additive noise was assumed to be independent on the different microphone channels. Test sig-

nals were simulated for fixed directions and at several different signal-to-noise ratios. The

software required was trivial. There was no need to model the acoustic source, the effects of

propagation or the effects of target motion on the received signal.

The model and software to simulate the SPS output were made as simple as possible, but it

was necessary to model the source, propagation effects, and target motion. Figure 10.1 shows

the principal elements of the simulator and the data flow between them. The input to the simula-

tor is a scenario. A scenario consists of one or more targets flying known trajectories, plus addi-

tional information concerning the location and characteristics of acoustic sensors and the back-

ground noise. The trajectories are described by piecewise continuous straight line segments with

either constant velocity or acceleration along each segment. The outputs are simulated SPS target

detections and true target positions as a function of time. These outputs are saved in files for later

use. The detections are subsequently used to drive the tracking algorithms. The true target posi-

tions are used to evaluate the output from the tracker.

Two forms of interpolation are shown in the figure. Normal interpolation simply converts

the description of target trajectories as a series of straight line segments into a sequence of aircraft

positions at regular time intervals. The time intervals are the same as the processing cycle of the

tracking algorithms, usually 2 s. Acoustic interpolation provides the location and velocity of the

acoustic sources at the same regular time intervals. The acoustic position and velocity are node

specific and must be calculated for each node location. The acoustic position of a target at time t

is the position of the target at the time it emitted the sound received by the node at time t. The

acoustic velocity is similarly defined.

The acoustic interpolation outputs are passed to an emission model and to a propagation

model. The emission model calculates the spectrum shape and level radiated from the target in

the direction of the receiving node. For this purpose the source is modeled by a sum of constant

frequency tones. The propagation model adds Doppler shifts and reduces the power levels to

account for spherical spreading of the signal. The structure will allow models of arbitrary com-

plexity and fidelity, but the simplest workable models were used.

The propagation model output is labeled "ideal detections." If the SPS was perfect and there

was no background noise the SPS output would consist of the ideal detections. The job of the

159

SCENARIO
DESCRIPTION

NORMAL do ON'- ACOUSTIC

INTERPOLATION -"INTERPOLATION

TARGET IDENTITY AND
ACOUSTIC ASPECTS

TRUE TARGET POSITIONS ACOUSTIC TARGET
POSITIONS AND

EMITTED FREOUENCIES
PROPAGATION AND POWERS

MODEL

IDEAL DETECTIONS

SENSOR AND SIGNAL-
PROCESSING MODEL

DETECTIONS

Figure 10.1. Elements of the SPS output simulation software.

160

sensor and signal processing model is to modify or discard the ideal detections and produce the

final synthetic detection data.

Figure 10.2 provides more details for the sensor and signal processing model. Random

measurement errors are added to ideal detections and false alarms are introduced. The measure-

ment error module also discards data on the basis of signal-to-noise ratios. The frequency pro-

cessing module limits the number of frequencies and the band of frequencies. The resolution

module combines detections that are not resolvable in frequency or direction.

The sensor and signal processing simulation software were first developed when frequency

domain beamforming was being employed and before the wideband algorithm described in Sec-

tion 4 had been developed. Fortunately, the simulator has served its main purposes, preliminary

testing of algorithms and software. It has not been necessary to revise it to better model the SPS

output for the newer SPS algorithms. More quantitative testing of tracker performance would

probably require revision of the simulator. The revised simulator, while more accurate, would

most likely be simpler than the current one because the source and propagation models could be

simplified.

10.3. Network Simulator

A software simulation of the test bed was used as a tool for debugging application software

before the test-bed nodes and operating system became available. The major elements of the

acoustic tracking algorithms and the user interface program were initially checked out using the

simulator and simulated acoustic data. Even after the nodes and operating system became avail-

able the network simulator continued to be used because it was a more convenient environment

for debugging.

Figure 10.3 illustrates the basic application software configuration on test-bed nodes and the

UIP computer that controls experiments. The computers are interconnected by an Ethernet or. if

radio links are used, by a virtual Ethernet. Each node contains a Sound Processing Subsystem

(SPS) and a Standard Nodal Computer (SNC). The SPS executes signal processing software to

produce acoustic detections and azimuth estimates. The SNC executes tracking software. It is

also possible for a node to have no SPS and for some nodes to be configured as TV subsystems,

but these are unnecessary complications for the present discussion.

161

IDEAL DETECTIONS

FALSE- MEASUREMENT
ALARM ERROR

SUBMODEL SUBMODEL

FREOUENCY-
PROCESSING
SUBMODELIPOTENTIAL

DETECTIONS

RESOLUTION
SUBMODEL

REALISTIC DETECTIONS

Figure 10.2. Elements of the acoustic sensor and signal processing model.

162

ETHERNET CABLE

LETHERNET ETHERNET JETHERNET

INTERFACE INTERFACE

STANDARD
NODE
COMPUTER

TRACKING TRACKING INTERFACE

INTERFAC

ACOUSTIC ACOUSTIC DISPLAY
AZIMUTH AZIMUTH

MEASUREMENT MEASUREMENT

ACOUSTIC USER
PROCESSING INTERFACE
SUBSYSTEM COMPUTER

NODE I NODE N VAX

Figure 10.3. Organization of application software.

Within each SNC, the NRTS operating system provides a two-layer interface to the Ether-

net, which links the nodes with each other and the User Interface Computer (UIC). One layer for-

mats messages while the other transmits and receives them.

A VAX-I 1/780 is shown as the UIC although other UNIX workstations with Ethernet capa-

bilities can be used for this purpose. The application software on this computer consists of the

User Interface Program (UIP) and display programs. The UIP controls the tracking software and

spools its performance. The display programs are used to display tracks and supporting data . The

single layer of Ethernet interface in the VAX sends and receives messages. Message formatting is

done in the UIP. The UIP and the control of experiments are described in depth in Section 7.

Early in the DSN project it was clear that the test bed would provide limited support for

software debugging and that we would begin debugging and algorithm testing before the nodes

and NRTS were fully operational. This prompted the development of a simulation of the test bed

163

with enough fidelity to allow most of the debugging and some algorithm testing to be done using

a general-purpose computer. The simulation was developed for the VAX computer running the

UNIX operating system.

Figure 10.4 illustrates the simulation configuration. The most obvious feature is the Ether-

net and communications interface simulation, indicated by the odd-shaped box in the figure. This

component of the simulation mimics the Ethernet distribution of point-to-point and broadcast

messages, plus the formatting of messages by the Nodal Run-Time System (NRTS) in each node.

Another obvious feature is the acoustic measurement interface. The simulation mimics the SPS

system by reading simulated or preprocessed SPS output data from a file into the appropriate port

of the SPS interface in the tracking software.

ETHERNET AND COMMUNICATION INTERFACE SIMULATION

TRACKING TRACKING USER
INTERFACE

ACOUSTIC ACOUSTIC
MEASUREMENT MEASUREMENT DISPLAY

INTERFACE INTERFACE

NODE 1 NODE N
EASUREMENT MEASUREMENT

FILE FILE
VAX

Figure 10.4. Organization of test-bed simulator software.

164

In the simulation environment, NRTS operating system services are emulated by subrou-

tines with identical parameters to the NRTS calls and by following a few special conventions

when writing the tracking software. Differences between the simulation and node environment

are isolated in a few subroutines. Because of such residual differences, some debugging must

still be done in the nodes, but the basic tracking algorithm was completely debugged in the simu-

lation environment.

10.4. The Test Bed as an Acoustic DSN Simulator

The test bed can be viewed as a simulator for a DSN system. It is not necessary to deploy

nodes and sensors and fly aircraft to perform experiments. Specifically, the test bed can use

simulated SPS data as input but operate in every other way as a deployed system. The locations

of the nodes in the simulated system can be arbitrary. These locations are used to simulate the

input data and are provided to the test bed as input parameters at the start of an experimental run.

The physical nodes can be located within a single room while the simulated system is deployed

over an area of many kilometers. Also, the communication connectivity can be arbitrary. The

test bed provides complete communication connectivity between nodes, and software is used to

modify that connectivity. The test bed has been used extensively in this way as a real-time simu-

lator of deployed DSN systems. Only occasionally has it been deployed as a geographically

dispersed tracking system for live targets.

The test bed has been used as a simulator for DSN systems of up to eight acoustic nodes.

The simulated data are read from floppy disks located at each node. Tracks and other experimen-

tal output are logged on floppy disks at the nodes and transmitted by Ethernet to the UIP for real-

time display and recording in a spool file. The data logged at the nodes are always complete

while the data in the spool file may be incomplete due to temporary overload of the Ethernet

software on the computer supporting the UIP.

Figure 10.5 illustrates the procedures for running an experiment using floppy disks for input

and for data logging. At the start of the experiment, separate input data and logging disks are

mounted on each of the nodes. At the end of the experiment, the floppy disks are removed and

transported to a VAX where they are read into files for post-experiment analysis. Several experi-

mental runs can be completed with the same physical disks and the results stored on different

partitions.

165

VAX

STORE IN

NODE ANALYSIS
DIRECTORY

TRACKING I
SOFTWARE SELECT

LOGGING PARTITION

NR TS FLOPPY i

SIMULATED
DATA

FLOPPY 0 0 TRACKING
PERFORMANCE

DATA
BLANK

LOGGING
FLOPPY

Figure 10.5. Procedures for using simulated data and logging performance.

Following are two examples using the test bed as a DSN simulator. The first is an example

of an experiment involving two targets. The simulation of two target situations is not difficult,

much less difficult than executing two-aircraft experiments with live aircraft. The second exam-

ple, alluded to in Section 6, revealed circumstances under which the tracking algorithm fails to

recognize when two tracks correspond to the same target.

Figure 10.6 shows tracks obtained from the simulated flight of two helicopters from left to

right through a rectangular grid of nodes. The experiment involved six nodes arranged in three

pairs and separated from each other by 5 km. Each node could only communicate directly with

its nearest neighbors. An acoustic detection range of 5 km was used for the simulation. Since the

scenario, detection ranges, and communication ranges are all known with certainty it is often

easier to understand the behavior of the system from such experiments than it is from live experi-

ments.

Only the first two pairs of nodes are shown in the figure, displayed as yellow triangles. The

figure is a photograph of the display generated during the real-time DSN simulation run using the

same display program that generated Figure 9.3 during live real-time experiments. The extra

blue lines on Figure 10.6 are the true tracks for the two helicopters. These are known for simu-

lated scenarios and the display program provides an option to display them. The photo was taken

just before the lead helicopter left the field-of-view of the display.

166

60

40

30

20

io

0z 0

10

-20

-90 0 1500

EAST (in)

Figure 10.6. Simadui~ track 'f tieow helicopters through, six nodes. Mhe six-ninle si'stern

was sinnia/aed in real tijme using thie test bedl.

167

Although the nodes have a simulated 5 km detection range, the initial location estimate for

the upper helicopter is only about 3 km from either node. This is caused by two kinds of delay:

algorithm delay and acoustic propagation delay. The algorithm delay results because position

track initiation requires the use of two well-established azimuth tracks and this requires several

2-s observation cycles. Acoustic propagation delays cause the target to be closer than its acoustic

detection range when it is first detected. For example, the helicopter is only 4.5 km from the

nodes when the nodes receive the sound emitted at a range of 5 km. The acoustic delay effect

appears even more obvious for the lower target because the target is further away from the upper

node for this case.

The location uncertainty of both tracks first decreases, then increases slightly as the aircraft

pass between the first two nodes, and decreases substantially shortly thereafter. Additional

azimuth measurements and a good geometrical configuration explain the initial decrease. The

increase when the targets pass between the first two nodes is because the measurements provide

very little location information along the line joining the two nodes. The sudden large decrease

occurs when the targets come within range of the next two nodes and azimuth measurements

from a total of four nodes contribute to the position tracks.

Other experiments with the same data were used to test the robustness of the tracking algo-

rithm when faced with communication failures.

Figure 10.7 shows the tracks obtained during a simulation experiment that revealed one par-

ticular problem with the tracking algorithm. The display is similar in form to that of Figure 10.6

but is a black-and-white version and does not show ground truth. This experiment involved only

the four nodes shown as triangles on the display. These have been labeled 1, 2, 3, 4 for reference.

A single helicopter flew from left to right midway between the bottom row of nodes and the sin-

gle node at the top. 'ommunication and detection ranges were the same as for the previous

experiment.

An obvious problem with the tracks shown in Figure 10.7 is that there are two tracks and

only one target. The two tracks begin close to each other, diverge somewhat and, with the excep-

tion of one of them toward the end of the run, never become high quality. A detailed analysis of

the data showed that one was initiated by nodes 1 and 2 and the other by nodes 2 and 3. Both

169

5000

4000

3A

3000

2000

1000__
E ,

0z 0

-1000-

A 2A 4

-2000

-3000(t

-4500 0 6500

EASTING (W)

Figure 10.7. Duplicate tracks obtained during the simulated flight of a single helicopter. This
resulted because two different pairs of nodes simultaneously initiated track. Methods to correct
this problem are known but not implemented.

were initiated during the same 2-s processing cycle. Because of this, track initiation and naming

mechanisms (discussed in Section 6) which attempt to avoid multiple track names for the same

target, failed to avoid multiple names in this case.

Fortunately, this failure is a low probability phenomenon. It occurred because nodes 2 and

3 began detecting the target at exactly the same time but after node 1. The result was that node 3

initiated a track using its data and data from node 2, while node I did a similar thing using the

same data from node 2. Subsequent to the duplicate track formation each new azimuth measure-

ment was used to update one or the other of the tracks, but not both. Thus, neither track obtained

full benefit of the available data.

The specific problem illustrated by this experiment is well understood. Simple tests involv-

ing the appearance of the same azimuth track in two different position track identifiers would

170

detect its occurrence and the tracking algorithms could be modified to eliminate the problem.

But, as discussed in Sections 6 and 13, the general problem of detecting and combining multiple

tracks for the same target remains an unsolved problem.

A portion of each of the two tracks shown in Figure 10.7 is missing. This is due to a tem-

porary overload of the Ethemet connection used to collect the data in real time from the nodes.

10.5. The Test Bed as an Acoustic and TV DSN Simulator

Simulation software was developed for real-time tracking experimentation using simulated

TV measurements in addition to simulated acoustic measurements. For experiments involving

TV as well as acoustic data, the test bed is used as described in Section 10.4, with the addition of

TV measurement simulation software for TV nodes. The TV software simulates the image pro-

cessing and target detection modules of the TV subsystem. The rest of the TV subsystem is

exactly the same as for experiments with live aircraft, including target selection algorithms, cam-

era control commands, and camera motion.

Figure 10.8 shows the elements of the simulation module for the image processing and tar-

get detection functions. The simulation parameters, including a description of the true aircraft

track as a function of time, are provided to the module by the user before the start of an

experiment. Target selection and camera pointing are performed by the camera pointing module

as for any live experiments. These functions are not simulated. Mount pick-off points provide

real-time camera orientation information to the TV simulation software. The outputs from the

simulation module are zoom and elevation control commands, azimuth measurement messages,

and a real-time display of the simulated target superimposed on a TV monitor.

The major elements of the TV simulation software are indicated in Figure 10.8. The target

dynamics simulator computes target position and orientation from the same scenario description

used by the acoustic data simulator. The plane-of-view (POV) simulator calculates target

features as they might appear on a TV frame. These include the target azimuth and elevation, the

target position in the POV, and the target image size. The size is based upon target dimensions

provided to the simulator by the user. The measurement generator produces an azimuth measure-

ment message if the simulated target position is within the TV POV and if the target projection

onto the POV is large enough. Random errors, with statistics selected by the experimenter, are

171

5

ACOUSTIC TV NODE ACOUSTIC
NODE 1 NODE 2

EAS POSITION (kin)

Io -
O I
A-

I-
0
0Z

-10

TARGET

Figure 10.8. TV simulation module for real-time experimentation.

included in the azimuth measurement. The measurement generator also provides zoom and

elevation control messages to control the camera. The TV display generator superimposes on the

TV image a simulated target image of the right size if it is within the camera field-of-view (since

there is no real target).

An example illustrates how the TV simulation software was used to test software, to tune

algorithms, and to demonstrate tracker performance differences with and without a TV sensor.

Figure 10.9 illustrates the simulated node locations and target track for one series of experiments

in which three test-bed nodes were used to simulate two acoustic nodes and one TV node. The

simulated target trajectory was south to north at a speed of Mach 0.1 and an altitude of 350 m.

The camera, when it was included, was oriented due south at a 100 elevation with the zoom set

for a 150 field-of-view. The pointing algorithm should choose to follow the target as long as pos-

sible while the target is coming toward the TV. Once the target rises above the field-of-view of

the camera, the camera should slew 1 800 and wait for the target to re-enter the field-of-view from

above.

172

POITION TRACK MESSAGES
(from DSN Node) POINTING

SIMULATION

PARAMETERS j CAMERA AZIMUTH/ELEVATION

(from User)

ZOOM/ELEVATIONI CONTROL
(to Camera Pointing)

TARETPOV MEASUREMEN AZIMUTH MEASUREMENT
I DYNAMICS SIMULATOR GENERATOR MESSAGES

SI MULATOR (to DSN Node)
I
I

TV DrISPLAY SIMULATED TARGET DISPLAY
GENERATOR (to TV Monitor)I

1 I

L _-- - 2. -

Figure 10.9. Simulated combined TV/acoustic tracking scenario.

Figure 10.10 shows an example of tracks obtained with and without TV azimuth measure-

ments. The initial error ellipses are large in both cases, on the order of several hundred meters.

Without TV measurements, the error ellipses remain sizable throughout the entire track, espe-

cially in the east-west direction because of the sensor/target geometry. With TV measurements

the performance, after the first few track points when only acoustic measurements are used, is

changed markedly. After the first TV measurement is processed (Point 3), the error ellipses show

a significant reduction because the TV measurements have no propagation delay and are more

accurate than the acoustic measurements. Once the target leaves the camera field-of-view the

173

5 1 1

4 POINT 6.
S LAST TV

MEASUREMENT

3 ONT5

FIRST TV

E MEASUREMENT

NODE I NODE 2 NODE I OE 2

NOE0
A POINT 4

LAST TV
INBOUND

0 MEASUREMENT
z -

POINT 3. ~ e- ON
RESULT OF

-3FIRS T TV P/T7
MEASUREMENT FIRST TV

-4 CUEING
MESSAGE

0 1 2 3 4 5 0 1 2 3 4 5

EAST POSITION (kin) EAST POSITION (kin)

Figure 10.10. Position t rack and error comparisons. (a) with and (b) without TV measurements.

174

camera slews and waits to acquire the target on its outbound path. During this time the error

ellipses grow to the levels obtained with acoustic-only tracking. When the outbound target enters

the top of the field-of-view of the camera (Point 5), error ellipses decrease again and remain

small until after the last TV measurement is obtained (Point 6).

These results were an initial demonstration of how distributed sensors with complementary

characteristics can be used to achieve improvements in system performance. The field-of-view

limitations of the TV sensor are complemented by the omnidirectional acoustic sensors that are

used to initiate tracks, to provide cues to the TV subsystem, and to maintain tracks while the TV

sensor slews and the target is passing overhead. The precision limitations of the acoustic sensors

are supplemented by the TV sensor which provides high-accuracy azimuth measurements even at

long distances. The result is longer and more accurate tracks.

These experiments were an important milestone in the development of the test-bed system.

They were the system integration tests for the tracking software and algorithms before they were

integrated with radio communication, acoustic signal processing, and TV signal processing

software.

10.6. Symbolic Information Flow Simulation

Section 6.2.5 discusses the irternodal information exchange needed for position track com-

bining. The discussion is illustrated with diagrams showing the symbolic flow of information

between nodes and how different track combination procedures modify that flow. The figures

were obtained by symbolically simulating the procedures and the information flows. The simula-

tion was developed as an aid to understanding some unstable tracking behavior that was observed

in an initial version of the tracking algorithm. The simulator helped show that the behavior

resulted from a subtle flaw in the position track combination procedure. The simulator was also

found to be generally helpful in understanding how track combination procedures could fail due

to lost or delayed messages. The development and use of the simulator were inspired by

diagrams, similar to those in Section 6.2.5, that have been used by ADS Inc. in describing their

distributed tracking algorithm framework[30].

The simulator represents information abstractly and symbolicly. Algebraic expressions are

used for the combination of information. No numerical calculation of estimates or covariance

175

matrices is performed. The use of symbolic rather than numeric values makes the sources and

flows of information explicit. Numeric calculations do not give any indication of how the results

are obtained, whereas the symbolic simulation focuses upon exactly that question.

The symbolic simulator used during the development of the track combining procedures

includes four basic operations: (1) initialization of target information; (2) addition of new infor-

mation directly from sensors; (3) transfer of information by broadcast, including the possibility of

message loss or delay; and (4) addition and subtraction of information by a position track combi-

nation procedure. These operations were implemented as a few functions using the symbolic

algebraic manipulation system, MACSYMA[29]. Different position track combination pro-

cedures corresponded to slightly different functions. A particular pattern of broadcasts, lost mes-

sages, and delays was realized by the arrangement of the functions into a simple program. The

simulator did not require the full power of MACSYMA. It merely exploited the MACSYMA

capabilities for forming, representing, and displaying symbolic sums and/or differences.

Such hand tailoring of programs on a vastly overpowered system was adequate for our lim-

ited use of symbolic simulation techniques. But a dedicated simulator, probably written in LISP,

would be a more effective tool if symbolic simulation was to be used more extensively. A dedi-

cated simulator could allow one to describe the effects of a position track combination procedure

more explicitly and to specify the situation (pattern of broadcasts, lost messages, etc.) more suc-

cinctly. A good graphical interface could serve the latter purpose.

In retrospect, a dedicated system should probably have been built and used in the early

stages of algorithm development to test algorithm concepts. It is difficult to anticipate how com-

plex distributed systems with asynchronous components will behave, particularly in the face of

phenomena like lost broadcast messages. And it is very difficult to diagnose unexpected behavior

after a system is fully implemented. Subtle design flaws may not be readily distinguished from

subtle implementation errors. Abstract simulations of a system, such as our symbolic simulator,

might be used to identify design problems early. More important, they could be used to test

design alternatives when paper-and-pencil analyses cannot capture all the complexities of the sys-

tem and without incurring the expense of fully implementing each alternative.

176

10.7. Software Development Tools

The primary software development environment for the DSN project was the UNIX

environment on a VAX 780 computer. Source code was written, compiled, and link-edited under

UNIX. Load modules for the other computers were transferred using tape or floppy disks or

downloaded using serial lines connected to the VAX. Most code was written in the C language

with a small amount of assembler code. Software development was carried as far as possible

within the VAX environment because of the available software support.

Program development steps for test-bed software are standard. First, the source files are

prepared using an editor. The source files are compiled or assembled using an appropriate trans-

lator to produce object files. The object files are link-edited, possibly with some libraries, to

make a load module. For the SNC computers the load module is converted into a special load-

able format used by the resident monitors on the SNC boards. In the case of the PDP- 11/34 com-

puters in the SPS systems, this step was not required because of the similarity between the 11/34

and VAX systems. The final product of this sequence is a file that can be downkcaded or booted

into a test-bed processor.

As noted above, the test bed includes PDP- 11/34 computers as well as the MC68000 pro-

cessors in the SNCs. Some of the code for the SPS, notably the acoustic data acquisition and

recording code, was developed completely under UNIX in much the same way as the code for the

SNCs. The code developed later, which implements the signal processing algorithms described

in Section 4, was developed partly under UNIX and partly on a PDP-l 1/34 under the RSXI I

operating system which supports the real-time signal processing code. Address space and

memory limitations on the the PDP-I 1/34 computers and memory limitations in the attached

FPS-120 signal processors complicated the deveiopment of the real-time signal processing sys-

tem. But, compared with the NRTS system, RSX II is a mature product with better tools for pro-

gram testing and debugging. Because of this, and because the signal processing code could be

tested without interaction between nodes, the discussion below emphasizes the SNC systems.

SNC processors are loaded in one of two ways. A load module for any of the processors in

an SNC can be downloaded to the processor on a serial line between the SNC and the VAX.

Alternatively, the load module can be copied onto a floppy disk and transferred to an SNC where

177

it is used to boot one or more of the processors in the SNC. The floppy disks eventually super-

ceded the serial lines for booting purposes. The main reason was that the floppy disk mechanism

performed the task faster and easier for the user.

Although booting from floppy disks displaced downloading over the serial lines, the lines

continued to serve usefully in the software development process. They provide a mechanism for

conveniently resetting and rebooting the SNC processors. Thus a software developer, or other

test-bed user, can perform these functions with several nodes from a single VAX terminal serving

as the system console for each of the systems in turn. In addition there may be several software

developers using different nodes at the same time. A mechanism is needed to control node

access. This is done using the serial lines and a simple "lock/unlock" command. A user wishing

to use a specific node requests a "lock" on it. This is granted if the node is available. Otherwise

the user is told who is using the node. Users are expected to "unlock" nodes when they are

finished using them.

The lock/unlock commands maintain an information file for each node. In addition to pro-

viding information about node usage, these files store various status information about the nodes

such as broken or missing hardware and a list of the programs resident in the nodal processors.

This allows users to avoid nodes with hardware problems and often saves download or booting

time. Much of this information must be entered manually by users or service personnel.

Each of the SNC processors provides console facilities that permit users to examine and

modify memory and registers, and to start and stop programs. The standard console command set

was modified slightly. One command was added to load programs from a floppy disk. Other

features were specifically motivated by the distributed nature of the test bed. Features were

added to reset all nodal processors with a single serial line. The primary SNC processor PI is

attached to that line and is reset automatically when a special reset message is received. Other

processors in the node can be reset indirectly by using P1 to relay reset commands. Figure 3.5

shows the remote reset device used to monitor the primary node serial line for reset codes as well

as the secondary reset lines to the other processors in the nodes. The same paths also provide a

remote user access to the monitor in any of the processors in the node. New I/O features that

were added to the monitor included a transparent mode and an option to use a general-purpose

178

serial input as the console interface as an alternative to the dedicated console interface on each

board. Resetting a SNC processor clears its on-board memory. In practice, this means when a

processor is reset it must be reloaded with a program.

User interaction with SNC systems for software debugging is limited to the primitive

interaction provided by the monitor program plus any windows that the programmer provides at

the application software level by including debug messages in the user code. The result is that it

is difficult to debug programs in the nodes.

'79/

11. DISTRIBUTED SURVEILLANCE SYSTEM DEVELOPMENT LESSONS

Several expectations were confirmed and lessons learned regarding the development of a

distributed DSN system. These concerned: (I) the role of experiments, (2) operating systems and

debugging, (3) intemodal communication, (4) physical distribution, and (5) system complexity.

Following is a summary of observations in each of these areas, based on our experience, that we

hope will be of value to future developers of distributed surveillance systems.

Controlled and repeatable experimental capabilities are essential for the development and

test of any complex system or set of algorithms. This is especially important for distributed sys-

tems. They are more likely to exhibit unexpected behavior than traditional systems. Simulated

data, raw sensor data, and partially processed data recorded by several nodes during live experi-

ments were all used extensively for controlled and repeatable testing. The test bed was designed

to support real-time experiments using these data. This allowed well-controlled algorithm and

system testing that would have been imposvible to achieve with live experiments.

A related fact is that when live experiments are performed it is essential to analyze and fully

understand system behavior, especially unexpected behavior. This is possible only if the system

saves enough data and provides the capability to reprocess the data to test if problems have been

correctly diagnosed and corrected. Detailed data logging and the reprocessing might not be

important for a fielded system but are essential for a development system. This is an example of

the general rule that the development system requires more capability than the fielded system.

This is even more the case for distributed systems.

Neither a distributed operating system nor well-developed remote debugging tools were

available at the inception of the DSN effort. Thus, it was necessary to develop an operating sys-

tem and interprocess communication mechanisms for the test bed. The resulting software is

necessarily simple and provides limited support for remote debugging. The lack of a fully func-

tional distributed operating system and remote debugging tools substantially increased the

difficulty of developing application-level DSN software. Although operating systems and tools

for distributed systems are currently areas of active research it is also clear that distributed sys-

tems, often with sophisticated workstations and file servers interconnected by a local area net-

work, are becoming relatively common. A new DSN test bed could make use of these advances

and would be far more flexible and easy to use for research and development of future DSN

systems.

181

The DSN approach is to use broadcast communications for distributed tracking and to use

point-to-point communication for other functions such as collection of data from areas and to

support system operation and development. No satisfactory communication system existed for

the test bed at the inception of the DSN effort. Experimental Packet Radio systems could prob-

ably be modified and used for DSN applications but this was not possible in the DSN time frame.

Therefore, part of the DSN effort included the procurement of microwave communication and

Ethernet hardware to interconnect nodes and development of special-purpose software to provide

internodal communication services. Although this required considerable effort, it is a minimal

system without the ease of use and all of the features that one would want for a DSN or for exten-

sive DSN experimentation in the field. The communication system is an essential tool for DSN

development as well as being an element of the final system. Communication system require-

ments are more stressing during the research and development phase than for the final system.

For example, the development process requires the collection of detailed information for test and

evaluation and frequent changes in the network software stress the communication system. A

next-generation DSN experimental system should make use of advances in local area network

and packet radio technology.

Another important point is that the communication system performance is typically limited

as much by software and protocol processing as it is by more traditional physical link parameters.

Throughput in the test bed is adequate to support simple distributed tracking experiments. But

larger scale experiments or experiments requiring substantially more data to be exchanged would

be limited by the communication system. The communication protocols and message processing

loads are the limiting factors, not the physical communication media. This is common for

computer-to-computer communication systems and should be kept in mind for future DSN sys-

tem development.

Software development and debugging typically involve an ongoing process of compilation,

changing load modules, and testing. This process is often more difficult in a distributed environ-

ment than in a centralized one. This was certainly true for the DSN test bed which was con-

strained by operating system features, available software tools, and the communication system.

Whenever possible the development of all software was done in the centralized environment of a

182

single computer. This included some simulation of the distributed environment. Future system

development should probably exploit modem local area network technology to provide a good

DSN development environment. The test bed utilizes Ethernet hardware, but advanced general-

purpose workstations and well-supported network software were not widely available in the ear-

lier stages of the project.

Distributed software testing in the nodes was deferred as long as possible because of the

difficulty of working with a distributed system with available tools. During early stages of

development, 9600-baud serial lines were used for communication between nodes and between

the software development computer and the nodes. Distributed testing required lengthy down-

loading to the nodes. The final test bed includes floppy disks at each node. Disks are written on

the central software development machine and physically loaded on the nodes to make software

changes. It would also be possible to download using the test-bed communication system, but the

necessary software has not been developed. In addition, the process might still be a bottleneck

because a single machine would perform all downloading. This could be somewhat alleviated by

an incremental downloading system that provides for modular downloading of only small por-

tions of the software that change.

Distributed systems must be designed from the start for remote operation of system ele-

ments. This includes remote hardware startup and diagnosis as well as distributed software

features. The test bed used board and higher level commercial products that were not designed

for use in a distributed system. The scale and nature of the DSN effort forced us to take this

approach and to minimize attention paid to designing for remote operation and test. As a result it

is clear in retrospect that the test bed is more difficult to operate and use than it need be.

These are examples of difficulties that arise in the development and testing of distributed

systems. A good infrastructure to support the development of distributed systems was non-

existent when the DSN project was started. The situation is improved but there is still much that

could be done to make the development, testing, and use of DSN systems easier.

And, finally, DSN systems are complex and this requires extensive test and maintenance,

automated tools for system operation, and automated tools for software development. Hardware

and software modularity is essential to keep complexity under control. There are two aspects to

183

this modularity. One relates to how to build DSN systems that are robust and reliable; the other

relates to the development process for complicated systems.

One advantage of DSN systems should be their insensitivity to failures and ability to adapt

to the addition of new nodes. The autonomous cooperating process implementation helps to make

this possible and is an example of using modularity to achieve robust and reliable operation. This

was the approach taken for the DSN tracking system and should also also be applied to other sys-

tem components including the operating system, communications, self-location, etc.

Autonomous processes require modular hardware to be most effective. A DSN system

automatically provides some hardware modularity; individual nodes are physically separated.

But even a single node can be a complex system performing many different functions. The

design should minimize the number of single point failures that can incapacitate a node. A sim-

ple problem that could be easily repaired in a centralized system may be more difficult to repair

in a remote node. System reliability requires that failure modes be as small grain as possible.

Thus, a single powerful nodal computer is less desirable than a multiprocessor design.

Software modularity as an aid to system development and testing is not unique to DSN sys-

tems. But the large number of software components in a DSN and the fact that it is a distributed

system make it even more important that modular designs and automated system development

tools be used. Even the simple experimental DSN test bed is complex, containing hundreds of

modules. A modular design and automated tools were employed and we believe this contributed

substantially to the success of the project.

184

12. SELF-LOCATION ALGORITHM STUDIES

12.1. Introduction

The locations of the nodes in a DSN system must be known. Without knowledge of these

locations, the measurements from different nodes cannot be combined to locate and track aircraft.

The accuracy to which aircraft can be located cannot be any better than the accuracy to which the

node locations are known.

Many options exist for the determination of node locations[30,3 I]. These include manual

surveying; hyperbolic "time difference of arrival" systems such as LORAN and DECCA or the

OMEGA system that uses multiple satellite beacons; the more modem satellite-based Global

Positioning System, GPS; triangulation from nodes to known beacon positions and generalized

triangulation systems such as JTIDS and EPLRS in which already located elements serve as addi-

tional beacons. Any of these, or variants, could be used for the DSN application. Different

approaches might be called for, depending on the specific DSN under development.

The DSN project concentrated on using intemodal range measurements for self-location.

The idea was to use the radios in each node to make the intemodal range measurements between

pairs of nodes and to develop distributed algorithms to provide each node with its own location as

a consequence of interactions with nearby nodes.

Of the node location options listed above, the approach emphasized during the DSN

research has been most similar to the triangulation approach and generalizations such as JTIDS

and EPLRS. However, a major difference is that a goal for the DSN work was to handle situa-

tions where triangulation would not work. Figure 12.1 illustrates a simple case of this. The solid

lines show radio communication connectivity. Lines radiating from a node terminate at those

nodes that can receive direct radio broadcasts from the node. These lines correspond to the only

distance measurements that can be made between pairs of nodes in this network. Starting with

those measurements and any three of the nodes, it is impossible to unambiguously construct the

geometry of the network using triangulation, adding one node at a time. Such problems can often

exist in a ground-based DSN system where line-of-sight limitations restrict connectivity. The

DSN research objective was to devise techniques that would accommodate these cases as well as

the simpler cases when there is sufficient connectivity to support triangulation.

185

NV

Figure 12.1. Network that cannot be configured by triangulation.

The research performed at Columbia University [30] emphasized how to determine when

the set of measurable internodal ranges is sufficient to unambiguously establish the network

configuration and how to calculate an estimate of the configuration. They gave less attention to

optimal handling of range estimation errors than to obtaining at least approximately correct posi-

tion estimates. They were less concerned with optimal handling of range estimation errors than

with finding configurations consistent with the measurements and detecting when multiple

configurations are possible.

Complementary research performed at Lincoln Laboratory emphasized the refinement of

node location estimates. The initial estimates might be obtained using algorithms such as those

developed at Columbia, although any other mechanism could be used. For example, rough map

coordinates might be recorded during node deployment. These estimates, perhaps accurate to

only within several hundred meters, could be used as initial estimates.

Section 12.2 summarizes our work on distributed self-location algorithms. Details of the

algorithms and further discussion are contained in Reference 32. Section 12.3 describes how

radios such as the experimental radios described in Section 8.4 can be used to estimate the ranges

required by the node location algorithms.

186

12.2. Location Algorithm

The DSN network self-location problem has been formulated as a distributed estimation

problem, and distributed estimation theoretic algorithms have been developed to estimate the net-

work geometry. The algorithms accept intemodal range measurements as inputs, calculate posi-

tion estimates as outputs, and optimally account for measurement errors. Initial esimates of nodal

positions are treated as unbiased random variables with known error covariance matrices.

Several simplifying assumptions have been made to minimize complexity during the

development and testing of initial versions of the algorithms. First, nodes are constrained to lie in

a two-dimensional plane and do not move. Nodes in three dimensions or on a known two-

dimensional nonplanar surface could be treated but involve unnecessary complexity. Second,

there are no biases in range measurements. As discussed in Section 12.3, the experimental CNT

radio incorporated anti-multipath features to satisfy this assumption. Third, as mentioned above,

initial estimates of node locations are available. These must be close enough to the true values so

that the algorithms, which maximize a function of the node positions, will not become trapped in

a local minimum. Fourth, there is enough communication connectivity to support a solutic.

This is less restrictive than requiring that the range measurements are sufficient to determine the

network configuration. One way to visualize this is to imagine that the initial node position

estimates are equivalent to many additional intemodal range measurements.

Subject to these assumptions, optimal distributed algorithms have been developed. The

approach is Bayesian. Statistical models for the initial location estimates and the range ineasure-

ments were used to derive the probability distribution of the node locations. This distribution is

then maximized to obtain the location estimates. For these purposes the initial estimates of node

locations were assumed to be independent unbiased Gaussian random variables, and the range

measurement errors were modeled as zero mean Gaussian random variables added to the square

of the true range. This measurement model is not as realistic as adding the errors to the range

values, but it was used because we initially thought we could derive closed-for-n solutions for the

node position estimates based upon this approach. It has only been possible to develop numeric

algorithms. Since this is the case there is no longer any reason to prefer the less-realistic model.

The DSN self-location problem is complicated because it is nonlinear and a distributed

solution is required (i.e., an algorithm that can be executed independently in each node without

187

any centralized control). To develop an understanding of different aspects of the problem a series

of sub-problems, leading to the solution of the DSN self-location problem, were investigated.

These were centralized and distributed versions of the problem with two forms of measurement

equations, linear and nonlinear. The distributed problem with nonlinear measurement equations

is the actual DSN self-location problem.

Part a of Figure 12.2 shows a portion of a large network, where each dot is a node and the xi

and y, are the position coordinates to be estimated for node i. The contour line Ni encloses a set

of neighbor nodes for node i, i.e., those nodes that can communicate directly with node i. This

contour is determined by the type of radio at the node, the electromagnetic environment and the

local geography, and is not known a priori. Parts b and c of the figure illustrate the two types of

intemodal measurements that have been considered. Linear measurement equations are obtained

when we assume that the vector distance between a node pair is measurable. The coordinates of

the vector difference, with noise added, are the measurements. The linear measurement problem

is not of much interest but was an important step toward the solution of the nonlinear problem,

which is of interest. Nonlinear measurement equations are obtained when we assume that the dis-

tance or the square of the distance between nodes is measurable after the addition of random

noise.

The centralized linear problem was easily solvable using Kalman filter methods and was of

little general interest. However, the distributed linear problem proviaed insight into how to

distribute the solution and what information to exchange between nodes. A decomposition of the

overall a posteriori probability function was found that allowed nodes to locally maximize a por-

tion of the probability function as a function of their own location. The resulting estimate

depends on the estimates from other nodes in the network. Each node then continues to revise its

own estimate as long as it continues to receive revised estimates from its neighbors and these

continue to significantly affect its own estimate. Convergence is assured if the local maximization

is completed one node at a time in the network. A convenient property of the solution is that a

node need know only the position estimates of nodes with which it can communicate directly,

assuming the node can communicate with every node for which there is a position measurement

relative to itself. The initial work with the linearized problem provided the insight needed to

develop the solution to the more important and difficult nonlinear problem.

188

* NODE i
(x, y)

(a) (b) 1 y Y,1

NETWORKSNODES NODE i -j1

NODE kc
(Xk, Yb,)

NOODE

(xv Yiy

Y00 NODE Z

Pt x

Figure 12.2. Network layout and measurement options. (a) Definition of neighborhood;
(b) linear measurement; (c) nonlinear measurement.

As noted previously, we used the square of range measurements as the observations for the

nonlinear self-location problem. This results in a fourth-order cost function to minimize with

respect to node coordinates. As for the linear case, it was possible to devise distributed algorithms

to accomplish this optimization. At each node the derivatives of cost function are taken with

respect to its two position coordinates, and set to zero to find the minimum. Other node locations

are assumed known for this purpose. This results in two simultaneous cubic equations that must

be solved at each node.

Three methods were tried for solving these equations. The most successful was to solve for

each coordinate separately with the other held constant at its last value, then iterating between the

two until they both converged. The second was Newton's method, which was less successful

189

because it often found local rather than global minima. The third approach was to find a closed-

form solution to the equations with the help of MACSYMA [29], but the resulting formulas were

too complex to be practical.

The overall procedure is for nodes to exchange location estimates with neighboring nodes

and repeat the above process until the solutions converge. As in the linear case, convergence is

assured only if estimates are revised one node at the time. Once again it is convenient that the set

of neighboring nodes, from which node i must obtain location estimates, is the same set for

which it is processing intemodal measurements.

Distributed self-location algorithms, including the communication policy, have been imple-

mented under UNIX on a VAX computer to investigate their behavior. Both linear and the non-

linear distributed algorithms were implemented. The behavior of the algorithms was tested as a

function of the standard deviation of initial node position estimates, the standard deviation of

intemodal measurements, and a parameter controlling convergence. Random ten-node networks

were used to test the algorithms and performance statistics were averaged over ten runs with each

network for different values of prior and measurement error standard deviations. For the linear

problem one node was taken as a reference node to avoid drifting in absolute coordinates. For the

nonlinear problem two reference nodes were needed to avoid translation and rotation. (There was

nothing special about the reference nodes other than that very small standard deviation., were

assigned to their position guesses.) All cases behaved much as one would intuitively expect, tak-

ing more time to converge when connectivity was low, or when errors were large.

Table 12.1 is an example of the results. It shows the performance statistics for the network

in Figure 12.3. a network in which none of the nodes can communicate with all of the reference

nodes, so no node is performing triangulation from three known positions. The trends toward

longer convergence times and larger final errors for larger initial position and measurement error

covariances are clear. The apparent exception in the bottom line is due to statistical fluctuations;

the results of only ten runs were averaged to obtain the statistics shown.

190

TABLE 12.1

Algorithm Performance for Network in Figure 12.3

Measurement Initial Position Standard Deviation
Standard
Deviation 5 m 50 m 500 m

(m)

150 3(1) 4.6 25.2
6.4(2) 57 300

4 17.6 37.2
5.8 35 48

1.5 11.4 29.2 43.8
3.5 5.3 4.4

NOTES: (1) Average number of algorithm cycles per node
(2) Final position error standard deviation (in meters)

191

(2500, 2500)

(0, 2000) (1000, 2000)

(3000.,1500)

(-1500, -1500) (500, -1500)

X z REFERENCE NODE

o =OTHER NODE
- =COMMUNICATIONS LINK

Figure 12.3. Sparsely connected net work used for seif-locon on tests.

192

12.3. Internodal Range Measurement

Distributed network self-registration using intemodal range measurements requires that

each node know the number and identities of its neighbors and that there be a way to measure the

distance between all neighbor pairs. Mechanisms for obtaining this information were not incor-

porated into the DSN test bed but are available.

How to determine the number and identities of neighbors is a common problem for all

packet radio networks. The information is used to route data packets through the networks. The

mechanism that has been developed for packet radios networks is for each node to occasionally

broadcast a Packet Radio Organization Packet (PROP) [331. The PROP identifies the sending

node and certifies that it is operational. Based upon the PROPs that it has recently received, each

node can maintaLn up-to-date tables listing its neighbors.

The PROP mechanism, in some form, will be required in DSNs to support the communica-

tion network, self-location and, indirectly, tracking algorithms. One option might be to employ

the periodic tracking message broadcasts for this purpose since each node transmits a tracking

message every few seconds. This is probably not a good approach since it intimately links dis-

tinct system functions and violates the design principles of modularity and layering. The PROP

messages, although this adds to the communication traffic, should be distinct from all other mes-

sages in the system. The cost will be more than compensated for by the resulting system simpli-

city and reliability.

Basic protocols for collecting and managing network node and communication connectivity

information are known. Nevertheless -t is worth noting one issue that arises when the radios are

pseudonoise spread-spectrum radios that can be operated with different code seeds for each mes-

sage. (The experimental radios described in Section 8.4 are of this type.) At any given time a

radio can "listen" for incoming messages using only one code seed. If all radios in the network

use the same seed this causes no problem and all PROPs will be received, subject to failures

resulting from message collisions. If the code-changing feature is utilized, then PROPs will be

missed unless the sender and the receiver are using the same seed during the transmission time

interval.

193

The code changing problem is most severe when a node first enters a network. At that time

there is no established communication link and the nodes may be poorly synchronized in time.

Options available are to not change code seeds, to change them on a coarse time scale commen-

surate with the poor time synchronization or to require the established network to occasionally

listen for PROPs from new nodes using a standard code that is agreed upon for the purpose of

finding new network members. Once the first PROP is received from a new node the problem is

substantially reduced. Time stamp information in the PROP can be the basis for bootstrapping

the node into the network with any degree of time and code synchronization that is desired.

Once communication links have been established, and a node has a list of neighbors, it can

measure one-by-one the distances between itself and each of the neighbors. This can be done by

measuring the time for a communication signal to pass between nodes, provided the time for a

direct line-of-sight communication path can be measured.

A signal transmitted by Node A may arrive at Node B by several paths, a direct path plus

multipaths corresponding to reflections and refractions of the transmitted signal. The signal

along the direct path will arrive first. The others will arrive later by an amount proportional to the

extra distance traveled by the wave. A multipath signal is shown in cartoon form in Figure 12.4.

ARRIVAL TIME ESTIMATION

STRONGEST SIGNAL

DIRECT SIGNAL

Figure 12.4. Illustration of strong late multipath arrival.

194

12.3. Internodal Range Measurement

Distributed network self-registration using intemodal range measurements requires that

each node know the number and identities of its neighbors and that there be a way to measure the

distance between all neighbor pairs. Mechanisms for obtaining this information were not incor-

porated into the DSN test bed but are available.

How to determine the number and identities of neighbors is a common problem for all

packet radio networks. The information is used to route data packets through the networks. The

mechanism that has been developed for packet radios networks is for each node to occasionally

broadcast a Packet Radio Organization Packet (PROP) [331. The PROP identifies the sending

node and certifies that it is operational. Based upon the PROPs that it has recently received, each

node can maintain up-to-date tables listing its neighbors.

The PROP mechanism, in some form, will be required in DSNs to support the communica-

tion network, self-location and, indirectly, tracking algorithms. One option might be to employ

the periodic tracking message broadcasts for this purpose since each node transmits a tracking

message every few seconds. This is probably not a good approach since it intimately links dis-

tinct system functions and violates the design principles of modularity and layering. The PROP

messages, although this adds to the communication traffic, should be distinct from all other mes-

sages in the system. The cost will be more than compensated for by the resulting system simpli-

city and reliability.

Basic protocols for collecting and managing network node and communication connectivity

information are known. Nevertheless it is worth noting one issue that arises when the radios are

pseudonoise spread-spectrum radios that can be operated with different code seeds for each mes-

sage. (The experimental radios described in Section 8.4 are of this type.) At any given time a

radio can "listen" for incoming messages using only one code seed. If all radios in the network

use the same seed this causes no problem and all PROPs will be received, subject to failures

resulting from message collisions. If the code-changing feature is utilized, then PROPs will be

missed unless the sender and the receiver are using the same seed during the transmission time

interval.

193

It shows the received signal strength time history from a single transmitted bit. There are three

distinct arrivals, corresponding to the direct path and two multipath arrives. Moreover, the

strongest signal is a multipath signal, not the direct path signal. Using the time of the strongest

signal to calculate the range would introduce a bias which would make the distance between the

two nodes appear to be larger than it really is.

The radios described in Section 8.4 contain many features designed to detect and measure

the time of the direct signal in the presence of larger multipath signals. There may still be situa-

tions in which the direct path is very weak, or even nonexistent, but those should be exceptional

situations, probably occurring only in urban environments where buildings block and reflect sig-

nals. In other environments the direct path should be detected. The derived intemodal range

measurements will then be unbiased, as we assumed for our work on self-location algorithms.

But there still is a possibility of situations that create multipath errors. This must ultimately be

acknowledged when developing self-location algorithms based upon intemodal range measure-

ments. It might be possible to formulate a model for the multipath errors and derive optimal

self-location algorithms. It is probably adequate to introduce heuristics to detect multipath meas-

urement errors and to discard the effected measurements. Since the errors will be large, their

detection should be straightforward and the loss of precision from eliminating the measurements

will be small.

If nodes are precisely synchronized in time, the time of flight from Node A to Node B can

be obtained by transmitting a time-stamped message from A to B. B can subtract the reception

time from the transmission time contained in the message and obtain the travel time. B can then

provide this information to A via a second message or the process can simply be repeated. DSN

nodes will not generally be synchronized to the degree required for this simple approach.

If nodes are not precisely synchronized there are two options for range measurement. Sup-

pose that Node A initiates a range measurement with Node B. One option is for B to act as a

repeater for the message received from A, with a fixed known delay between reception and

transmission. The other is for B to behave as a more sophisticated repeater for which the delay

between reception and transmission is not fixed. In this case, B does not behave strictly as a

repeater but transmits a message containing delay time information.

195

Neither of these options has been implemented for the DSN test bed or the Communication

Network Technology (CNT) radios (Section 8.4), but it is clear that there are no fu.,damental

difficulties. Figure 12.5 illustrates a range measurement protocol for the CNT radios. The radio

design does not permit them to be used as simple repeaters with a known and fixed delay but

message arrival times can be measured. Transmission times can be specified precisely, but in

terms of clocks that are not synchronized. The time between a reception and a transmission trig-

gered by the reception is variable, depending upon the time required to process the incoming

message and prepare the outgoing one. As shown in the figure, the range R is estimated from the

initial transmission time at A (TI A), the reception time of that message at B (T2
8), the later time

at which B responds (T316), and the still later time when A receives the response (T 4A). C is the

speed of light. An important thing to note is that times with a superscript A are measured by the

clock at Node A and times with a superscript B are measured by the clock at Node B. No syn-

chronization is required, although the two clocks must tick at approximately the correct rate. The

rate must be accurate enough so that the total round-trip time from A back to A will be measured

with an accuracy commensurate with the desired accuracy for the range measurement. This is

easy to achieve.

RANGE MEASUREMENT

TA

C,.

4 T38

2R= (TA - TA)-(T-T!

Figure 12.5. Determination of range using time-stamped messages.

196

13. MULTISITE DATA-INTEGRATION STUDIES

13.1. Introduction

Each node in a DSN system maintains tracks for targets within range of its own sensors.

This area of responsibility may extend somewhat beyond the sensor range but will not normally

extend to include the sensor coverage areas of all nodes in the network, except perhaps for small

networks containing only a handful of nodes. Whatever the size of the area of responsibility,

adjacent nodes may contain tracks for the same target. Some of these redundant tracks may differ

from each other in detail and the set of nodes with knowledge of the target will change as the tar-

get moves through the network. Redundant tracks must be merged together and users should be

provided with nonredundant "full-network" tracks. This requires collecting and merging informa-

tion from multiple sites and providing the integrated result to the user in a useful form.

A multisite track integration algorithm and a user query and display system have been

implemented and used for preliminary investigation of multisite integration issues. The multisite

integration algorithm, which has been used with prerecorded helicopter data and with simulated

data for one and two helicopters and up to eight nodes, was implemented as multiple communi-

cating processes on a single UNIX system. The user query and display system was implemented

on a Silicon Graphics, Inc. (SGI) UNIX workstation with a color display. The objectives were to

experiment with a simple approach to multisite integration and, based upon that experience, to

formulate multisite integration ideas for future DSN systems.

13.2. Multisite Integration Algorithms

An acyclic data integration tree, rooted at a network user, can be used to collect surveillance

information in a DSN. The nodes of the tree are the nodes that might provide useful information

to the user. The branches represent information flow. Tracks are sent inward from the leaves,

with nodes combining redundant tracks as redundancies are detected. Track files presented to the

user have had all redundancies removed and contain tracks from all the nodes in the network.

Our experimentation with multisite integration has concentrated on exploring the use of

acyclic data integration trees. Standard track identifiers (see Section 6.2.8) are used to determine

when tracks are redundant. The experimental multisite integration algorithm uses the position

197

track combining algorithm described in Section 6.2.5. The track combining algorithm is used at

each node to merge local track information with information received from other nodes. The

result is sent out to the next node in the routing tree. Tracks that are new to the node are passed

on without modification. Eventually, the information reaches the user.

Like the tracking system, the multisite integration system functions on a fixed time cycle.

The tracking nodes operate with update periods of 2 s. The multisite integration algorithms

operate with an update period that is an integer multiple of the tracking period. Integration pro-

cessing is set in motion during the same tracking cycle at all network nodes. The start time and

length of the integration period are parameters of the integration processes. The integration pro-

cess in each node gathers tracks from the tracking process in the node at the start ot the first

integration cycle, and multisite data collection is begun at the leaf nodes of the multisite integra-

tion routing tree. Multisite integration messages propagate inward from the leaf nodes to the

user. The combining algorithm at each node is triggered by the arrival of an integration message

from another node. As soon as all the expected integration messages have been received and pro-

cessed, the node transmits an integration message to the next node in the tree. Time-outs are used

to trigger outputs to the next node when expected inputs have not been received within a reason-

able time. When a time-out occurs, the node sends along whatever information it has and waits

for the start of the next multisite integration cycle. Integration messages summarize the aircraft

traffic status at the start of each integration cycle.

The structure and contents of data integration messages are similar to those of normal target

tracking messages, with additions to provide extra multisite integration information. Normal

tracking messages contain the identity of the sending node, the message origin time at the

transmitting node, local and foreign state vectors, and error covariance matrices. The message

origin time for normal tracking messages is also the time corresponding to the position and

covariance estimates in the message. Multisite integration messages contain separate message

and track times. The message time for a multisite integration message need not be the time

corresponding to the position and covariance estimates in the message; generally it does not. The

time corresponding to the track estimates is explicitly contained in each message. It is the start

time of the multisite integration cycle during which the tracks are reported to the user.

198

The multisite integration messages also contain lists of nodes contributing to each track. At

the start of an integration cycle each node initializes its multisite integration message. For each

track, the list of contributing nodes is initialized with one element, the identity of the initializing

node. A list is initialized for each track reported to the multisite integration process by the

tracker. Subsequently, whenever two multisite integration messages are combined, the lists of

contributing nodes are merged.

In addition, at the start of each multisite integration cycle, a list is initialized of nodes

expected eventually to contribute information for the user. These lists describe the multisite data

integration routing tree. Nodes are deleted from the lists as they contribute messages. When a

multisite integration message eventually reaches the user, the list will have been reduced to a list

of nodes failing to report during that multisite integration cycle. Note that a failure to contribute

a data integration message is independent of whether a node detects or tracks any specific target.

Even if a node has no targets to report, it should provide a timely data integration message if the

node is part of the multisite integration tree.

Integration algorithms have been implemented as a main control process and a group of

other processes, each representing a process at a different node in the multisite integration tree,

that all execute on a single UNIX system. The node processes are interconnected by pipes to form

the multisite integration route tree. The main process reads parameter files, translates parameter

files into messages, and executes the node processes. The main process also sends messages to

the node processes to specify algorithm and route parameters. Algorithm and route parameters

are input to the main process in the same format as the parameters sent from the UIP process to

the tracking process. Each line in the parameter file contains a node number, the process it is used

in (in this case multisite integration), a keyword, and a value or values corresponding to the key-

word. The algorithm parameters specify the timing of the multisite integration algorithm as well

as uncertainty and threshold values required for track combining. The routing parameters specify

the network route for multisite data collection and integration. In addition, the main process

creates the interprocess pipes according to the route information.

The multisite integration algorithms were tested using data previously recorded on nodal

floppy disks during multinode tracking experiments. The data from the disks were transferred to

UNIX files, one for each node in an experiment. The node processes read track information from

199

these files and also receive multisite integration messages from other nodes through the pipes.

Each node reads its input pipes, performs multisite integration, and writes to its output pipe.

Multisite integration communication failures are simulated by filtering the intemodal pipes to

remove some of the messages. The nodes detect missing messages by monitoring message time

stamps and take the appropriate action, which includes no further waiting for old data and adding

the missing message information to its output integration message. The last node in the integra-

tion route produces the multisite integration messages for the user. The user messages are saved

in a file and later transferred to an SGI UNIX workstation where they are displayed.

13.3. User Display and Multisite Integration Examples

A multisite query and display system has been implemented on a SGI UNIX workstation. It

provides several useful displays and options. These include displays of present target locations

and past histories, node locations, the data integration routing tree, network communication con-

nectivity, and nodes contributing to specific tracks. The display can be zoomed in or out on areas

of interest. Track points are centered within error ellipses derived from track covariance matrices

contained in the multisite integration messages. The ellipses indicate the size and shape of

estimated track uncertainties. The display is similar to that used for real-time test-bed experi-

ments but has several additional features.

The display system requires several input files in addition to the multisite integration mes-

sage stream. These include files that contain messages that specify node locations, communica-

tion ranges, and sensor detection ranges. These messages were previously defined and used in the

tracking software. It also requires multisite integration route specification messages.

The display program is interactively controlled using menus and a three-button mouse. The

buttons invoke functions such as changing menus, selecting rbjects, recentering the screen, and

zooming in and out. They are also used to toggle options, such as track vectorization, communi-

cation range, detection range, track history, and route depiction. The program can display normal

target tracking messages during tracking experiments, as well as display multisite integration

messages.

Figure 13.1 shows an example of the situation display. Node locations are shown as small

yellow dots. The data integration tree is indicated by the long blue isosceles triangles. Each trian-

gle is an arrowhead pointing from a sending to a receiving node in the multisite integration route

200

Figure 13.1. Franh,)Ie of a situation tfipla~' shos.'ing six nodles, two track. gaa-collectiopi route,
and the nodes eosiiributing to the tracks.

201 , O

tree. Also shown are 30-s track histories for two targets flying from the left to the right. These are

the two series of four small red error ellipses. In the case shown, the integration cycle was five

times the basic tracking cycle, so the time between ellipses is 10 s. The straight yellow lines radi-

ating from tracks to nodes identify which nodes provided information for each integrated track.

The text at the right side is a help menu to remind the user how to use the mouse buttons. Other

information on the display includes a labeled geographic grid and two alphanumeric striligs that

show the present time and the time of the last received track integration message. The small red

arrow is a cursor used to pick options from other menus and select targets or nodes. Its position is

controlled by the mouse.

Figure 13.2 shows a display similar to that of Figure 13.1 except that the display has been

zoomed in and is for a later time during the same experiment. Note that the node in the upper-

right corner is not contributing to the right-most track although it is close enough to be within

detection range. Although it is not shown on this display, the user could also request the detection

range of the sensor, shown as a circle centered on the node, to confirm that the target is indeed

within normal detection range.

The display in Figure 13.2 can be used to infer that there is a malfunction in the tracking

system at the upper-right node, although the node is performing its multisite data collection and

integration functions. This requires knowing that as long as messages are being received from a

node, the route triangles are solid as illustrated in Figures 13.1 and 13.2: but, when messages are

not being received the route specification triangles are shown only in outline as in Figure 13.3.

The situation depicted in Figure 13.3 is more catastrophic than that in Figure 13.2. The user,

located at the lower-right-hand node, is receiving no multisite integration messages from the node

at the upper-right. Therefore, no information can be collected directly from any of the upper three

nodes. The user knows only that the multisite integration messages from the upper right-hand

node are not being received. This is true even though two more of the yellow lines from tracks to

nodes are missing. We cannot infer from the missing yellow lines that the other two nodes have

failed. The tracks from the lower nodes may contain information from the upper nodes. We can-

not know for certain because the information transfer from the upper to the lower nodes, if any, is

through normal tracking messages, not multisite integration messages.

Returning to Figure 13.2 we see that all communication links are working, that two of the

nodes are contributing normally to the tracks, and one node is not. Thus, we conclude that there

203)I

Figure 11.2. Snulauio~n disp/ai' example af a laser uinure andi zoomed in.

205

Figure 1.3. Situaion displars showing a commPuicaithionI failure.

is a problem with the tracking process in the noncontributing node. This is a simple illustration of

how a well-designed user interface will help detect and diagnose failures as well as provide sur-

veillance information.

13.4. Discussion

Multisite integration is an important and complex problem for large-scale DSN systems.

Our preliminary experimentation is only a first step toward the development of a practical system.

But based upon that work a few observations can be made. First, it appears that the algorithm

used for track combining within the tracking system can also be used for multisite integration.

Second, users and system operators should be provided convenient access to information such as

node positions, sensor capabilities, communication connectivity, routing trees, contributing

nodes, etc., in addition to tracks. Such information may increase user confidence in results, iden-

tify erroneous results, and help operational personnel identify system faults. Third, acyclic mul-

tisite integration routing trees are the only practical multisite integration approach that we have

been able to identify, and there remain many unanswered questions about how to establish and

modify these trees, about the timeliness of the information provided to the user, and about the

interplay between multisite integration and the underlying communication system. Following is

additional discussion of the first and third of these points.

It is not surprising that the track combining algorithm used by the tracker can also be used

for multisite track integration; the problems are similar. But, just as the tracker may make track

association errors because it relies only on track identifiers for that purpose (see Sections 6.2.10

and 10.4.), so will the multisite integration procedure. More sophisticated track association algo-

rithms are required for multisite integration as well as for basic tracking. Every trick or method

used by the tracker should be included in the multisite integration process.

Imagine a situation in which an aircraft can be tracked for a long period of time but, for

some reason, the track is broken into two or more segments, with different track identifiers. The

real-time tracker will probably not be aided much nor its real-time tracking output improved

much if, in retrospect, it becomes possible to associate the fragments with a single aircraft. But a

user might be interested to know that there is a single target rather than several. If this is the case,

higher-level track association algorithms will be required for future DSN systems. Both statisti-

cal and knowledge-based techniques might be used as the basis for the algorithms.

209

Data integration trees appear to be a practical and direct approach to data collection and

integration. But several important unanswered questions remain concerning the automatic use of

routing trees and the relationship between the multisite integration process and the DSN com-

munication system.

The preceding discussion of multisite integration assumed that the routing tree was static

but subject to damage resulting from nodal failures. No algorithms for selecting integration trees

or mechanisms for reacting to failures were discussed. Both of these issues need more attention.

Given knowledge of the nodes of interest to the user and the communication connectivity of

the network, it is not difficult to devise reasonable algorithms to select routing trees. The

problem is more difficult if there are multiple users within the network and either processing or

communication resources are constrained. It is in this context of constraints that algorithms to

select data collection trees are still an issue. Such algorithms are also required if the system is to

react automatically to failures requiring rerouting of information.

The situation illustrated in Figure 13.4 is an example of the complex relationship between

multisite integration and communication. The solid lines represent a multisite integration routing

tree. The two hash marks on the link between nodes 2 and 5 on Figure 13.4(a) represent a failure

of the link. The dotted links represent an automatic response of the communication system to the

failure. The communication system has automatically invoked a two-hop link to continue to sup-

ply the service from node 2 to node 5. This may be reasonable for the communications system,

but a better solution would be to change the tree to the one shown in Figure 13.4(b). This

configuration will require less communication resources. Automatic communication rerouting

can be thought of as a temporary measure to use until the multisite integration routing tree is

reconfigured. But there is a possible trap. If the communication rerouting is too effective, the

multisite integration system might never be aware of the communication problem and never

make any changes. The multisite system should be informed of changes in the communication

system so that it can reconfigure itself in response to the changes.

Another issue is the timeliness and quality of the track information provided to users. In our

experimental system the user receives track estimates that can be delayed by as much as a full

data integration processing cycle; the report to the user is always a snapshot of the system traffic

210

1 2 3 4 1 2 3 4

S65

7 7

S(a) (b)

Figure 13.4. Illustration of communication and integration interrelation. Solid lines are integration
routing trees. (a) Communication link failure between 2 and 5 has caused the communication system to
route integration traffic from 2 through 6 to 5. (b) Redesigned integration routing tree that accounts for
the link failure between 2 and 5 and reduced overall traffic.

at the start of the cycle in which the report is received. If the cycle is large, say 10 or 20 s, this

delay may be unacceptably large. The track can be extrapolated forward to the present but the

quality will suffer. An alternative would be to make the report to the user as current as possible,

subject to the constraints of processing and communication delays. This can be easily accom-

plished. Rather than collecting track information from the tracker at the same time at each node,

the integration process at a node could obtain information from its own tracker only when it has

received all incoming integration messages and it is preparea to calculate and transmit its outgo-

ing integration message. The most recent information would then be included in the report

delivered to the user. The information for nearby targets would be as up-to-date and accurate as

possible, a generally desirable feature.

Because of an implementation detail, our experimental multisite integration system would

introduce substantial delays in the delivery of information from remote nodes in the network.

The detail is that the tracking system, the multisite integration system, and all internodal com-

munication are driven by the acoustic signal processing cycle, usually 2 s. The node output trig-

gered by the arrival of multisite integration messages can occur only after the start of the next sig-

nal processing cycle. The result is that a report from a node N communication hops distant from

the user is delayed by at least N acoustic signal processing cycles; usually 2N seconds. Also note

211

that the integration cycle must be at least N acoustic processing cycles in duration or the informa-

tion will not arrive at the user.

Although our implementation exacerbates the delay problem for distant nodes, additive

multihop delays are a fundamental consequence of multihop communication and serially linked

computational processes in a DSN. If the computation and message handling time at a single

node is T seconds, then the information delay incurred when passing though N nodes is at least

NT seconds. The result is that the delay grows rapidly. The growth in T could be reduced sub-

stantially by breaking the hop-by-hop link to the next acoustic processing cycle. The growth can

probably be reduced to acceptable levels, even for very large networks, but it is important to real-

ize that multisite data integration delays must be considered during the design of large-scale DSN

systems.

We have not attempted to address all the alternatives or issues related to multisite data

integration in large-scale DSN systems. The discussion here has been limited only to a few

specific issues that arose during our preliminary multisite data integration investigation.

212

14. KNOWLEDGE-BASED SYSTEM DIAGNOSIS

A future DSN might contain cooperating knowledge-sources distributed among network

nodes, interacting to diagnose system failures and to control the system. The Lincoln Laboratory

DSN effort included preliminary research aimed at using artificial intelligence methods to auto-

mate system diagnosis and control in response to evolving situations. However, our research

focused only on knowledge-sources for individual nodes, with the mechanisms for cooperation

between knowledge-sources left as a subject for future research as well as being the topic of

separate distributed problem solving research by another DSN contractor[34]. Even more

specifically, we considered only the problem of reasoning about the adjustment of signal process-

ing parameters in the acoustic signal processing subsystem. The work was done in close coopera-

tion with the knowledge-based signal interpretation research [35,36] undertaken by the Digital

Signal Processing Group within the M.I.T. Electrical Engineering Department. Each group

investigated the use of multiple levels of signal abstraction, but in different ways.

To gain a perspective for the reasoning required to adaptively adjust signal processing

parameters, we first examined how we selected parameter settings during the development of the

DSN test bed. We observed that parameter selection generally involved an initial guess, followed

by adjustments derived from analyzing the discrepancies between the system output and our

knowledge of the actual scenario. An important part of this process was reasoning about the rela-

tionship between the system output, the specific system parameter settings, and the test scenario.

We hypothesized that this diagnostic reasoning process could be an important element of an

automatic adaptive system and decided to investigate it further.

Diagnostic reasoning using discrepancies requires mechanisms for detecting discrepancies

between the system output and the true situation. Once a discrepancy has been detected, a

knowledge-source can be triggered to perform the diagnostic reasoning to determine what is

responsible for the problem, but first the the existence of a problem must be detected, even when

there are uncertainties in the knowledge of the true situation.

An experimental system using this approach, discrepancy detection followed by diagnostic

reasoning to identify parameter settings responsible for the discrepancy, was implemented on a

Symbolics 3600 LISP Machine. The primary system inputs are the outputs from the DSN signal

213

processing system and an approximate description of the true situation. If a discrepancy is

detected, the system produces an explanation. The explanations are similar to those that would

be provided by a human expert familiar with the underlying theory for the DSN signal processing

algorithms.

The experimental system assumes the existence of an independent information source that

provides scenario descriptions for discrepancy detection. There would not be such an external

information source in a real DSN environment. Fortunately there are alternative, internal DSN

sources of scenario information that can be used for discrepancy dete-tion in that case. Four have

been identified. These make use of: (1) alternative views, (2) alternative processing, (3) com-

parison with predictions, and (4) empirical consistencies. None requires human intervention or

an independent information source distinct from (he DSN system itself.

The discussion of the experimental diagnosis system, which requires an external informa-

tion source, is continued below following a brief description of the four discrepancy detection

alternatives that do not require an external source. This digression is to show how the ideas

embodied in the experimental system might be used in a DSN.

(1) Alternative Views: Nodes in a DSN have overlapped areas of coverage and can provide

different nodal views within an area of common coverage. The output of one node can be used as

the source of scenario information to detect discrepancies in the output of another node. The role

of the two nodes can also be reversed and heuristics used to decide which of the resulting diag-

noses is more plausible.

(2) Alternative Processing: The signal processing system developed for the DSN test-bed

nodes is an acoustic direction finding system that does not exploit the spectral features of the sig-

nals. Other algorithms, such as recognition algorithms for identifying the number and types of

aircraft, might also be included in a node. Their outputs could be compared with outputs from

the direction finding system for the purpose of discrepancy detection.

(3) Comparison with Predictions: Past system outputs can be used to predict future outputs

for comparison with actual future outputs. The predictions may be based on knowledge about

typical flight characteristics for various types of aircraft in different situations, or may be simple

extrapolations of aircraft position using models such as those described in Section 6 for tracking

algorithms.

214

(4) Empirical Consistencies: Simple empirical knowledge can also be used to identify

unlikely output patterns as discrepancies requiring explanation. For example, short-duration

azimuth tracks often do not correspond to real sources. Instead, they can be artifacts of the pro-

cessing that produces the tracks. Thus, one might assume that the longer tracks represent true

tracks while the shorter ones are discrepancies needing explanation.

The experimental diagnosis system models the DSN signal processing system as a set of

processes that transform a qualitative description of the actual scenario into a description of the

signal processing output [37,38]. In the absence of a discrepancy between the scenario and the

signal processing output, each of the processes reduces to an identity transformation. System

faults are viewed as being caused by one or more of the processes becoming nonidentity transfor-

mations. Diagnosis involves finding a set of nonidentity processes responsible for discrepancies.

The processes each embody theoretical knowledge of some phenomenon and its relationship to

specific algorithm parameters.

The diagnosis system makes extensive use of knowledge from the underlying Fourier

theory of the DSN signal processing system. This knowledge is organized as a search-space

and a set of operators . The search-space is a set of abstract states which represent possible

DSN system outputs. The operators represent the processes that can affect the DSN signal pro-

cessing output. The diagnosis system uses means-ends analysis to select operators that together

can transform a state consistent with the actual scenario into a state representing the observed

DSN signal processing output. The collection of operators and the intermediate data states gen-

erated in this process constitute the explanation [37]. The explanation is presented diagrammati-

cally to the user as well as in text form. Figure 14.1 shows an example of the graphical output.

The experimental system represents each state as a collection of signal-objects , each

corresponding to an acoustic source at a particular time. Each of the signal-objects is further

characterized by its spectral characteristics (e.g., bandwidth, amplitude, energy) as well as

dynamic characteristics (e.g., velocity, track history). Each state can also be described at four dif-

ferent levels of abstraction; the highest level of abstraction hides the most detail. State parameters

are specified by a range of values rather than by a single value. Thus, for example, an aircraft

whose direction is unknown can be represented as having a direction in the range from 0 to 3600.

215

90 dog 90 dog 90 dog

R~~~0 =INF)10IIF
F = 871 I .INF[

0 ddg dog

PROPAGATION PROPAGATION DISCRETE-SPATIAL

FAST-VELOCITY- EQUAL-RESOLUTION-
OPERATOR OPERATOR

Figure 14.1. Sample output from diagnosis system. Shaded sectors represent signals. Angular extent represents
angular uncertainty. Radial extent represents signal bandwidth. Signal amplitude range is given by bracketed
numbers. Figure illustrates an initial state transformed first by a fast-velocity operator and then by an equal-
resolu!ion operator.

Each operator in the experimental system is a LISP-function which manipulates the data

structures representing the states. Since state parameters are specified as ranges of values, the

operators are general enough to manipulate parameters that are specified as ranges. Furthermore,

an operator can carry out the desired action at whatever level of abstraction is specified. In addi-

tion to the LISP-function that carries out the action of an operator on a state, each operator also

consists of a symbolic description of the conditions under which it can be applied to a state. An

example of an operator is given in Table 14.1.

We have also experimented with key portions of a qualitative reasoning system to prescribe

parameter changes intended to overcome problems identified during diagnosis. This system util-

izes qualitative models of how parameter changes affect the actions of the operators. We have

implemented and experimented with such models for some DSN operators.

It is clear from the results of our investigations that system diagnosis and control of the

DSN signal processing subsystem at each node is feasible with current Al technology. In particu-

lar, we implemented an experimental diagnosis system which identifies the processes and param-

eters responsible for DSN signal processing faults. We also designed and implemented portions

of a control system for prescribing parameter changes intended to overcome the problems

identified during diagnosis.

216

TABLE 14.1

Equal-Resolution Operator

Input Signal Type Propagation, continuous-temporal,
discrete-temporal, continuous-spatial

Output Signal Type Continuous-spatial
Differences Reduced Resolution
Operator Parameters

Direction Array-aperture
Power Array-aperture
Frequency Array-aperture, epsilon
Band Array-aperture, epsilon
Gaussian Array-aperture, epsilon

State Preconditions Per pair of input signals
Direction Direction difference intersects

[0,1 00/array-aperture]
Power Direction level preconditions

Power in (O,inf]
Frequency Minimum frequencies intersect

Maximum frequencies intersect
Direction difference intersects
[0,(1000.epsilon)/(array-aperture.0.0001

*maximum-frequency)]
Band Power level preconditions

Frequency level preconditions
Amps in (O,inf]

Gaussian Frequency level preconditions with
Gaussian model

Scenario Preconditions None
State Postconditions Per pair of input signals

Direction Delete input signals
Create signal whose direction is the cover of

the two input directions
Power Direction level postconditions

Power of input signal in
10,sum of maximum powers in signals]

Frequency Direction level postconditions
Minimum frequency of output same as input
Maximum frequency of output same as input

Band Frequency level postconditions
Power level postconditions
Amps of output signal in
[0,sum of maximum amps in signals)

Gaussian Band level postconditions with Gaussian model

217

Although our investigations were limited to the signal processing subsystem, we believe

that the diagnosis and cure approach that we have taken may be applicable to other functions of a

DSN node. However, a substantial research effort might be needed to obtain positive proof for

such a speculation. Furthermore, since many of the higher level functions of a DSN node depend

upon interaction with other DSN nodes, the diagnosis and control problem should be viewed

within a more general framework of distributed problem-solving. Our preliminary study of some

specialized knowledge sources for a single DSN node will hopefully provide a small experiential

base for future exploration of problems requiring the consideration of multinode issues.

218

15. REMAINING RESEARCH AND DEVELOPMENT

Although the DSN program has successfully achieved the goal of demonstrating the feasi-

bility of DSN systems, it is clear there are many areas where additional work is needed. Follow-

ing is a summary of such items in three categories: (1) distributed acoustic surveillance, (2)

experimental system and subsystem prototypes, and (3) applications of artificial intelligence.

Much of the work could be general, but some would benefit from emphasizing specific system

applications.

There has been a lot of emphasis on acoustics during the DSN project. The feasibility of

using acoustics for detection and tracking has been established but there are several remaining

research questions. First, what are the limits of acoustic tracking for the case of multiple and

maneuvering targets? Analysis, algorithm development, and experimentation are required to

answer this question. Second, passive target identification can probably be accomplished acousti-

cally. How well it can be done and how to do it should be investigated. Third, acoustic perfor-

mance will vary considerably with environmental conditions. This needs to be understood,

quantified, and analyzed in the context of specific system requirements.

There appear to be no fundamental impediments to the development of a DSN system.

However, many engineering problems must be addressed in the context of a DSN system. A

fully functional experimental prototype system should be developed, demonstrating all essential

DSN features. This would include modular prototype nodes and a communication system with

remote start, test, and operation features. Unlike the existing test-bed system, the experimental

prototype would be functionally complete. For example, it would maintain time synchronization,

provide multi-hop point-to-point communication, and maintain network configuration tables.

Each function would be performed as it might be in a real DSN system. This differs from the test

bed in which, for example, nodes are manually synchronized, communication services are spe-

cialized, network configuration is manually maintained in static tables, and no multisite data

integration service is offered during real-time operation. A prototype system would establish that

no unsolved system problems remain. This probably would require operating the experimental

system for extended periods in a manner consistent with operational requirements.

Development and evaluation of a prototype system would would include assembling system

development tools, demonstrating that they are sufficiently mature to support full-scale system

development.

219

DSN systems offer many opportunities for the application of Al approaches to automated

system operation and sensor data interpretation. Automated system test and control capabilities

will be needed to effectively operate DSN systems. It may be feasible to exploit knowledge-

based methods for the development of such diagnosis and control capabilities.

Finally, acoustic surveillance provides at least three interesting data-understanding prob-

lems. One is to develop acoustic tracking systems with improved performance by explicitly

integrating knowledge into the system. This would have broad application beyond acoustic dis-

tributed systems. Target recognition is a second area where knowledge-based methods could be

applied. The third area is knowledge-based adaptive signal processing.

2

220

ACKNOWLEDGEMENTS

The successful completion of the Lincoln Laboratory DSN project is the result of hard,

dedicatcd, and competent work by many people.

John Delaney played a crucial role. Working with Bob Tenney he initiated the model-based

approach to multisensor distributed tracking. He developed the algorithms, designed the applica-

tion software, implemented much of it himself and oversaw the implementation of the rest. Sec-

tions 6 and 7 are based primarily on his work. He wrote the drafts for those sections as well as

portions of Section 10.

Jim Needham was responsible for the test-bed hardware during most of its life and also

helped to solve many software-hardware interface problems. His was a difficult and often thank-

less job that he carried out very well with help from many people including Larry Sargent, Joe

Racamato, Bob D'Ambra. Bob Gallagher, Dick Simard, and Royce Brown. Hal Heggestad

helped with the test-bed microwave radio system.

Joft Saks designed and implemented the NRTS software system. Connie McElwain made

improvements to NRTS and developed radio communication software for the test bed.

Hamid Nawab did the initial work on the wideband direction finding algorithm and

explored the area of knowledge-based system diagnosis. Others involved in the implementation

and testing of the wideband algorithm include Tami Peli. Glenn Adams who also provided gen-

eral system programming support to the project, and Bob Walton who also developed digital-data

acquisition software and the initial delayed-time target location algorithms. Jorge Galdos

developed and experimented with TV algorithms, building upon work by Nawab and aided by

Royce Brown.

Lynn Feddem assisted with the implementation of tracking software and performed mul-

tisite data integration studies. She and Jim Needham were instrumental in test-bed experimenta-

tion and tuning that led to the final real-time tracking demonstrations.

Liz Hinzlemann developed distributed self-location algorithms.

Additional past contributers included Peter Green, Kieu Hua, Ted Retzlaff. Jeff Kurtz, Dave

White, Dorothy Curtis, Mike Humphrey. Russ Dionne, Bob Ganley. Julie Rowhein, and Paul

Demko.

221

REFERENCES

[1) D.E. Dudgeon, "Fundamentals of digital array processing," Proceedings of the IEEE, Vol.

65, No. 6, pp.898-904, June 1977.

[21 D.H.Johnson, "The application of spectral estimation methods to bearing estimation

problems," Proceedings of the IEEE, Vol. 70, No. 9, pp. 1018-1028 Sept. 1982.

[3] S.W.Lang and J.H.McClellan, "Spectral estimation for sensor arrays," IEEE Trans. Acoust.

Speech, Signal Processing, Vol. ASSP-31, No. 2, pp. 349-358, April 1983.

[4] J.S.Lim and N.A.Malik, "A new algorithm for two-dimensional maximum entropy power

spectrum estimation," IEEE Trans. Acoust. Speech, Signal Processing, Vol. ASSP-29, No.

6, June 1981, pp. 401-413.

[5] M.Wax, T.Shan, and T.Kailath, "Location and the spectral density estimation of multiple

sources," Proc. 16th Asilomar Conf. Cir. Syst. Comp.. 1982.

[61 J.Capon, "High-resolution frequency-wavenumber spectrum analysis," Proc. IEEE. Vol. 57.

No. 8, pp. 1408-1418, August 1969.

[7] S.H. Nawab, F.U. Dowla and R.T. Lacoss, "Direction determination of wideband signals,"

IEEE Trans. on Acoust., Speech, Signal Processing, Vol. 33, pp. 1114-1122. October 1985.

[81 S.H. Nawab, F.U. Dowla, and R. T. Lacoss, "A new method for wideband sensor array

processing," Int'l. Conf. on Acoustics, Speech and Signal Processing, San Diego, CA,

March 19-21, 1984.

191 A.V.Oppenheim and R.W.Schafer, Digital Signal Processing, Prentice-Hall. Englewood

Cliffs, N.J., 1975, p. 358.

[101 J.H.McClellan, "Multidimensional spectral estimation," in Proceedings of the IEEE. Vol.

70, Sept. 1982, pp. 1029-1039.

[11] R.T.Lacoss, "Data adaptive spectral analysis methods." Geophysics, Vol. 36. Aug. 1971.

pp. 661-675.

112] R.R. Tenney and J.R. Delaney, "A Distributed Aeroacoustic Tracking Algorithm,"

American Control Conference, San Diego, CA, June 6-8, 1984.

223

[13] J.R. Delaney and R.R. Tenney, "Broadcast Communications Policies for Distributed

Aeroacoustic Tracking," nmierican Control Conference, Boston, MA, June 12-14, 1985.

(14] R.T. Lacoss, "Distributed Mixed Sensor Aircraft Tracking," American Control Conference,

Minneapolis, MN, June 10-12, 1987.

[15] A.H. Jazwinski, Stochastic Processes and Filtering Theory (Academic Press, New York,

1970).

[161 Semiannual Technical Summary, Distributed Sensor Networks Program, M.I.T. Lincoln

Laboratory, 30 September 1985

[17] A.S. Willsky, et al., "Combining and Updating Local Estimates and Regional Maps Along

Sets of One-Dimensional Tracks," IEEE Trans.on Automatic Control, Vol. AC-27, pp.

799-813, August, 1982.

[18] R.E, Kalman and R.S. Bucy, "New Results in Filtering and Prediction Theory," Trans. of

the ASME: Journal of Basic Engineering, Vol. 83, pp. 95-108, March 1961.

[19] Y. Bar-Shalom, "Tracking Methods in a Multitarget Environment," IEEE Trans. on

Automatic Control, Vol. AC-23, pp. 618-626, August 1978.

[20] Chee-Yee Chong, Kuo-Chu Chang, and Shozo Mori, "Distributed Tracking in Distributed

Sensor Networks," Proceedings of 1986 American Control Conference, Seattle, WA, 1986.

(211 A.S. Willsky and H.L. Jones, "A Generalized Likelihood Ratio Approach to the Detection

and Estimation of Jumps in Linear Systems," IEEE Transactions on Automatic Control,

Vol. AC-21, pp. 108-112, February 1976.

[22] Semiannual Technical Summary, Distributed Sensor Networks, M.I.T. Lincoln Laboratory,

30 September 1982.

[231 Semiannual Technical Summary, Distributed Sensor Networks, M.I.T. Lincoln Laboratory,

31 March 1980.

[241 Semiannual Technical Summary, Distributed Sensor Networks, M.I.T. Lincoln Laboratory,

30 September 1979.

[25] J.H. Fischer, J.H. Cafarella, D.R. Arsenault, G.T.Flynn and C.A. Bauman, "Wide-Band

Packet Radio Technology," Prc. IEEE, Vol. 75, No. 1, pp. 100-115, January 1987.

224

[26] Semiannual Technical Summary, Distributed Sensor Networks, M.I.T. Lincoln Laboratory,

31 March 1982

[27] Semiannual Technical Summary, Distributed Sensor Networks, M.I.T. Lincoln Laboratory,

31 March 1982

[28] R. Rashid, "Accent: A network operating system for SPICE/DSN." Technical Report,

Computer Science Dept. Carnegie-Mellon Univ., May 1981.

[291 MACSYMA Reference Manual, The MathLab Group, Laboratory for Computer Science,

MIT, Version Ten, First Printing, January 1983.

[30] Y. Yemini, D. Bacon, and A.Dupuy, "The Distributed Incremental Position Location

System," Technical Report, Columbia University Department of Electrical Engineering and

Computer Science, 1986.

131] "Position Location and Navigation Symposium," IEEE, Atlantic City New Jersey, 1982.

[32] E. A. Hinzelman, "A Nonlinear Distributed Algorithm for Self-Location," MIT MSc Thesis,

June 1985.

[33] J. Jubin and J.D. Tornow, "The DARPA Packet Radio Network Protocols," Proc. IEEE,

Vol. 75, No. 1. pp. 21-32, January 1987.

[34] V.R. Lesser and D.D. Corkill, "Functionally Accurate, Cooperative Distributed Systems,"

IEEE Trans. on Systems, Man and Cybernetics, Vol. SMC- 11, No.1, pp. 81-96, January

1981.

[35] E.E. Milios, "Signal Processing and Interpretation Using Multilevel Signal Abstractions,"

MIT PhD. Thesis, May 1986.

[361 E.E. Milios and S.H. Nawab, "Multilevel Signal Abstractions in Signal Processing," Proc.

1986 Digital Signal Processing Workshop, IEEE Acoustics, Speech and Signal Processing

Society, 20-22 October 1986

[371 H.Nawab. V. Lesser, and E. Milios, "Diagnosis Using the Formal Theory of a Signal-

Processing System," IEEE Trans on Systems, Man, and Cybernetics, Vol. 17, No. 3, pp.

369-79, May/June 1987.

[38] S.H. Nawab, V. Lesser, and E. Milios, "Conceptual Diagnosis of an Algorithmic Signal

Processing System," Int'l. Conf. on Acoustics, Speech and Signal Processing, Tokyo, April

1986.

225

UNCLASSIFIED
SECURIY CLASSIFCAION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release, distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD.TR-48-175

Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITO)RING ORGANIZATION
Lincoln Laboratory, MIT (If applicable) Electronic Systems Division

6c. ADDRESS (City. State, and Zip Code) 7b. ADDRESS (City, State, and Zip Code)

P.O. Box 73 Hanscom AFB, MA 01731
Lexington, MA 02173-0073

Sa. NAME OF FUNDING/SPONSORING Tb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F1962845-C-0002
Defense Advanced Research Projects Agency

Sc. ADDRESS (City, State, and Zip Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

62708E A03345

11. TITLE (Include Security Classification)

Distributed Sensor Networks

12. PERSONAL AUTHOR(S)
Richard T. Lacoss

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final Report FROM - TO 1986, September. 30 240

16. SUPPLEMENTARY NOTATION

None

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP multiplesensor surveillance system acoustic sensors acoustic array processing

distributed tracking video sensors digital radio
target surveillance and tracking low-flying aircraft distributed estimation
communication network

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This is the final Lincoln Laboratory technical report for the DARPA Distributed Sensor Networks (DSN) project.
The report reviews the DSN concept and documents the accomplishments, technical results, and lessons learned
during the project. Topics covered include: acoustic direction finding, distributed tracking algorithms, hardware and
software elements of an experimental test bed, network communication and self-location, multisite data-integration,
and experimental demonstrations of tracking low-flying aircraft using multiple distributed acoustic and TV sensors.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
S UNCLASSIFIED/UNLIMITED B SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Lt. Col. Hugh L. Southall, USAF (617) 981-2330 ESD/TML

00 FORM 1473. t StR U 03 APR11"nms y be weid us . UNCLASSIFIED
A5 MEW slfsn wablats.

SCURTM CIAUICATIOU OF TIM PAGE

